Large Scale Frequency Domain Numerical Simulation of Aircraft Engine Tone Noise Radiation and Scattering

Author(s):  
Dan Stanescu ◽  
M. Hussaini ◽  
Feri Farassat
2017 ◽  
Vol 12 (3) ◽  
pp. 446-455 ◽  
Author(s):  
Boyu Zhao ◽  
◽  
Tomonori Nagayama ◽  
Masashi Toyoda ◽  
Noritoshi Makihata ◽  
...  

A smartphone-based Dynamic Response Intelligent Monitoring System (iDRIMS) was developed to conduct road evaluations with high efficiency and reasonable accuracy [1]. iDRIMS estimates the International Roughness Index (IRI) based on vehicle responses measured with an iOS application, which obtains three-axis acceleration, angular velocity, and GPS with accurate sampling timing. However, the robustness and accuracy was limited. In this paper, the iDRIMS was improved mainly by employing frequency domain analysis. The algorithm consists of two steps. First, a half car (HC) model was selected as the vehicle model, and vehicle parameters were identified through driving tests over a portable hump of known size. In contrast to the previous approach of parameter identification in the time domain using Unscented Kalman Filter, the parameters were optimized to minimize the difference between the simulation and measured hump responses in the frequency domain, using a genetic algorithm. Then, IRI was estimated by measuring the vertical acceleration responses of ordinary vehicles. The measured acceleration was converted into the acceleration root mean square (RMS) of the sprung mass of a standard quarter car (QC) by multiplying a transfer function. The transfer function, estimated through the simulation of the identified HC model, as opposed to QC model in previous approaches, reflected the vehicle pitching motions and sensor installation location. The RMS was further converted to IRI based on the correlation between these values. Numerical simulation was conducted to investigate the performance in terms of various driving speeds and sensor locations. The experiment was conducted at a 13 km road by comparing three types of vehicles and a profiler. Inaccurate IRI estimation at the speed change section was experimentally investigated and compensated. Furthermore, the improved method was applied to 72 vehicles that were driven more than 180,000 km per year. A data collection and analysis platform was built, which successfully collected and analyzed large-scale data with high efficiency. The results from both numerical simulation and real case application show that the improved method accurately estimates IRI with high robustness and efficiency.


2021 ◽  
Vol 11 (6) ◽  
pp. 2551
Author(s):  
Hyobum Lee ◽  
Hangseok Choi ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.


2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


2021 ◽  
Author(s):  
Natalia Vazaeva ◽  
Otto Chkhetiani ◽  
Michael Kurgansky

<p>Polar lows (PLs) are important mesoscale (horizontal diameter up to 1000 km) maritime weather systems at high latitudes, forming pole ward from the polar front. We consider the possible prognostic criteria of PLs, in particular, the kinematic helicity as a quadratic characteristic related to the integral vortex formations and the kinematic vorticity number (KVN). To calculate such characteristics we use reanalysis data and the results of numerical simulation with the WRF-ARW model (Version 4.1.) for the PLs over the Nordic (Norwegian and Barents) seas. For comparison, experimental data are used.</p><p>Our estimate of helicity is based on the connection of an integral helicity (IH) in the Ekman layer with the geostrophic wind velocity, due to the good correlation between IH and half the sum of the wind velocity squared. We have chosen IH averaged over preselected area covering the locality of PLs genesis. This area was moving along with the centre of PL during the numerical simulation.</p><p>The genesis of PLs can be divided into three stages: (i) an initial development stage, in which a number of small vortices appear in a shear zone; (ii) a late development stage, characterized by the merger of vortices; (iii) a mature stage, in which only a single PL is present. Approximately one day before PL formation, a significant increase in helicity was observed. The average helicity bulk density of large-scale motions has values of 0.3 – 0.4 ms<sup>-2</sup>. The local changes in helicity are adjacent to the front side of the PLs. The IH criterion described facilitates the identification of the PLs genesis area. For a more detailed analysis of the PL genesis, it is recommended to apply KVN, which is the additional indicator of PL size and intensity. At the moment of maximum intensity of PLs KVN can reach values of 12 – 14 units. The advantage of using KVN is also in its clear change directly in the centre of the emerging PLs, which allows to precisely indicates the limits of the most intense part of PLs.</p><p>The main challenge is to make the operational forecast of PLs possible through the selection of the prognostic integral characteristics of PLs, sufficient for PLs identification and for analysis of their size and intensity in a convenient, usable and understandable way. The criteria associated with vorticity and helicity are reflected in the PLs genesis and development quite clearly. At this time, such a claim is only a hypothesis, which must be tested using a larger set of cases. Future work will need to extend these analyses to other active PL basins. Also, it would be interesting to compare the representation of PLs by using any other criteria. It is intended to use our combined criteria as a precursor to machine learning-based PLs identification procedure where satellite image analysis and capture of particular cloud patterns are currently applied in most of the cases. It would eliminate the time consuming first stage of collecting data sets.</p><p>This work was supported by the Russian Science Foundation (project No. 19-17-00248).</p>


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Georg Geiser ◽  
Jens Wellner ◽  
Edmund Kügeler ◽  
Anton Weber ◽  
Anselm Moors

A nonlinear full-wheel time-domain simulation of a two-stage low pressure turbine is presented, analyzed, and compared with the available experimental data. Recent improvements to the computational fluid dynamics (CFD) solver TRACE that lead to significantly reduced wall-clock times for such large scale simulations are described in brief. Since the configuration is characterized by significant unsteady turbulence and transition effects, it is well suited for the validation and benchmarking of frequency-domain methods. Transition, flow separation and wall pressure fluctuations on the stator blades of the second stage are analyzed in detail. A strong azimuthal π-periodicity is observed, manifesting in a significantly varying stability of the midspan trailing edge flow with a quasi-steady closed separation bubble on certain blades and highly dynamic partially open separation bubbles with recurring transition and turbulent reattachment on other blades. The energy spectrum of fluctuating wall quantities in that regime shows a high bandwidth and considerable disharmonic content, which is challenging for frequency-domain-based simulation methods.


Sign in / Sign up

Export Citation Format

Share Document