Frequency measurement based damage detection methods applied to different cracks configurations

Author(s):  
Laxmikant Kannappan ◽  
KrishnaKumar Shankar
2021 ◽  
pp. 147592172199847
Author(s):  
William Soo Lon Wah ◽  
Yining Xia

Damage detection methods developed in the literature are affected by the presence of outlier measurements. These measurements can prevent small levels of damage to be detected. Therefore, a method to eliminate the effects of outlier measurements is proposed in this article. The method uses the difference in fits to examine how deleting an observation affects the predicted value of a model. This allows the observations that have a large influence on the model created, to be identified. These observations are the outlier measurements and they are eliminated from the database before the application of damage detection methods. Eliminating the outliers before the application of damage detection methods allows the normal procedures to detect damage, to be implemented. A multiple-regression-based damage detection method, which uses the natural frequencies as both the independent and dependent variables, is also developed in this article. A beam structure model and an experimental wooden bridge structure are analysed using the multiple-regression-based damage detection method with and without the application of the method proposed to eliminate the effects of outliers. The results obtained demonstrate that smaller levels of damage can be detected when the effects of outlier measurements are eliminated using the method proposed in this article.


2017 ◽  
Vol 17 (4) ◽  
pp. 850-868 ◽  
Author(s):  
William Soo Lon Wah ◽  
Yung-Tsang Chen ◽  
Gethin Wyn Roberts ◽  
Ahmed Elamin

Analyzing changes in vibration properties (e.g. natural frequencies) of structures as a result of damage has been heavily used by researchers for damage detection of civil structures. These changes, however, are not only caused by damage of the structural components, but they are also affected by the varying environmental conditions the structures are faced with, such as the temperature change, which limits the use of most damage detection methods presented in the literature that did not account for these effects. In this article, a damage detection method capable of distinguishing between the effects of damage and of the changing environmental conditions affecting damage sensitivity features is proposed. This method eliminates the need to form the baseline of the undamaged structure using damage sensitivity features obtained from a wide range of environmental conditions, as conventionally has been done, and utilizes features from two extreme and opposite environmental conditions as baselines. To allow near real-time monitoring, subsequent measurements are added one at a time to the baseline to create new data sets. Principal component analysis is then introduced for processing each data set so that patterns can be extracted and damage can be distinguished from environmental effects. The proposed method is tested using a two-dimensional truss structure and validated using measurements from the Z24 Bridge which was monitored for nearly a year, with damage scenarios applied to it near the end of the monitoring period. The results demonstrate the robustness of the proposed method for damage detection under changing environmental conditions. The method also works despite the nonlinear effects produced by environmental conditions on damage sensitivity features. Moreover, since each measurement is allowed to be analyzed one at a time, near real-time monitoring is possible. Damage progression can also be given from the method which makes it advantageous for damage evolution monitoring.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3730 ◽  
Author(s):  
Jhonatan Camacho ◽  
Andrés Quintero ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica

The implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising technology for developing integrated solutions in Structural Health Monitoring. In this paper, design, test, and specifications for a standalone inspection prototype are presented, which take advantage of piezo-diagnostics principle, statistical processing via Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a piezoelectric active system with the capability to detect defects in structures, by using a PCA-based algorithm embedded in the Odroid-U3 ARM Linux platform. The operation of the equipment consists of applying, at one side of the structure, wide guided waves by means of piezoelectric devices operated in actuation mode and to record the wave response in another side of the structure by using the same kind of piezoelectric devices operated in sensor mode. Based on the nominal response of the guide wave (no damages), represented by means of a PCA statistical model, the system can detect damages between the actuated/sensed points through squared prediction error (Q-statistical index). The system performance was evaluated in a pipe test bench where two kinds of damages were studied: first, a mass is added to the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The experiments were conducted on two lab structures: (i) a meter carbon-steel pipe section and (ii) a pipe loop structure. The wave response was recorded between the instrumented points for two conditions: (i) The pipe in nominal conditions, where several repetitions will be applied to build the nominal statistical model and (ii) when damage is caused to the pipe (mass adding or leak). Damage conditions were graphically recognized through the Q-statistic chart. Thus, the feasibility to implement an automated real-time diagnostic system is demonstrated with minimum processing resources and hardware flexibility.


Author(s):  
N. Kerle ◽  
F. Nex ◽  
D. Duarte ◽  
A. Vetrivel

<p><strong>Abstract.</strong> Structural disaster damage detection and characterisation is one of the oldest remote sensing challenges, and the utility of virtually every type of active and passive sensor deployed on various air- and spaceborne platforms has been assessed. The proliferation and growing sophistication of UAV in recent years has opened up many new opportunities for damage mapping, due to the high spatial resolution, the resulting stereo images and derivatives, and the flexibility of the platform. We have addressed the problem in the context of two European research projects, RECONASS and INACHUS. In this paper we synthesize and evaluate the progress of 6 years of research focused on advanced image analysis that was driven by progress in computer vision, photogrammetry and machine learning, but also by constraints imposed by the needs of first responder and other civil protection end users. The projects focused on damage to individual buildings caused by seismic activity but also explosions, and our work centred on the processing of 3D point cloud information acquired from stereo imagery. Initially focusing on the development of both supervised and unsupervised damage detection methods built on advanced texture features and basic classifiers such as Support Vector Machine and Random Forest, the work moved on to the use of deep learning. In particular the coupling of image-derived features and 3D point cloud information in a Convolutional Neural Network (CNN) proved successful in detecting also subtle damage features. In addition to the detection of standard rubble and debris, CNN-based methods were developed to detect typical façade damage indicators, such as cracks and spalling, including with a focus on multi-temporal and multi-scale feature fusion. We further developed a processing pipeline and mobile app to facilitate near-real time damage mapping. The solutions were tested in a number of pilot experiments and evaluated by a variety of stakeholders.</p>


Author(s):  
Mousa Rezaee ◽  
Reza Fathi ◽  
Vahid Jahangiri ◽  
Mir Mohammad Ettefagh ◽  
Aysan Jamalkia ◽  
...  

Floating wind turbines may encounter severe situations because of harsh environments. Higher cost of repair and maintenance of floating wind turbines have led researches to focus on damage detection methods that can prevent sudden failures. This paper presents an applicable method of damage detection and structural health monitoring for floating wind turbines based on the autoregressive moving average (ARMA) model and fuzzy classification. First, the dynamic model of a spar type floating wind turbine is constructed, by which the time responses of each degree of freedom of the system are acquired. With the system’s nonlinearity included, the intrinsic mode functions are obtained for the response signal. The Hilbert–Huang transform is applied and the appropriate measured signal for each degree of freedom is chosen for the ARMA modeling. In order to evaluate the proposed method, the ARMA parameters are first estimated for the undamaged condition then assumed damages are injected to the model and the ARMA parameters are once again estimated for the damaged condition. These parameters are considered as inputs for the fuzzy classification method. After training the system using the assumed damaged and undamaged conditions, the proposed method is simulated. Furthermore, the effect of measurement noise on the success rate is investigated. The results show that, in the presence of noise, the proposed method is able to identify the damage location and severity of mooring lines with acceptable success rate.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1937 ◽  
Author(s):  
Adam Stawiarski ◽  
Aleksander Muc

In this paper, the elastic wave propagation method was used in damage detection in thin structures. The effectiveness and accuracy of the system based on the wave propagation phenomenon depend on the number and localization of the sensors. The utilization of the piezoelectric (PZT) transducers makes possible to build a low-cost damage detection system that can be used in structural health monitoring (SHM) of the metallic and composite structures. The different number and localization of transducers were considered in the numerical and experimental analysis of the wave propagation phenomenon. The relation of the sensors configuration and the damage detection capability was demonstrated. The main assumptions and requirements of SHM systems of different levels were discussed with reference to the damage detection expectations. The importance of the damage detection system constituents (sensors number, localization, or damage index) in different levels of analysis was verified and discussed to emphasize that in many practical applications introducing complicated procedures and sophisticated data processing techniques does not lead to improving the damage detection efficiency. Finally, the necessity of the appropriate formulation of SHM system requirements and expectations was underlined to improve the effectiveness of the detection methods in particular levels of analysis and thus to improve the safety of the monitored structures.


Sign in / Sign up

Export Citation Format

Share Document