Investigation on the Combustion Mode Translation of Thermal Choked Scramjet

Author(s):  
Pan Yu ◽  
Liu Wei-Dong ◽  
Wang Zhen-Guo
Keyword(s):  

Fuel ◽  
2021 ◽  
Vol 302 ◽  
pp. 121179
Author(s):  
Mingming Huang ◽  
Ruichuan Li ◽  
Jikang Xu ◽  
Shen Cheng ◽  
Haoxin Deng ◽  
...  


2021 ◽  
Vol 227 ◽  
pp. 481-482
Author(s):  
Kherlen Jigjid ◽  
Chitoshi Tamaoki ◽  
Yuki Minamoto ◽  
Ryota Nakazawa ◽  
Nakamasa Inoue ◽  
...  


Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou ◽  
Li Jiang ◽  
Jeffrey Sterniak

Highly diluted, low temperature homogeneous charge compression ignition (HCCI) combustion leads to ultra-low levels of engine-out NOx emissions. A standard drive cycle, however, would require switches between HCCI and spark-ignited (SI) combustion modes. In this paper a methodology is introduced, investigating the fuel economy of such a multimode combustion concept in combination with a three-way catalytic converter (TWC). The TWC needs to exhibit unoccupied oxygen storage sites in order to show acceptable performance. But the lean exhaust gas during HCCI operation fills the oxygen storage and leads to a drop in NOx conversion efficiency. Eventually the levels of NOx become unacceptable and a mode switch to a fuel rich combustion mode is necessary in order to deplete the oxygen storage. The resulting lean-rich cycling leads to a penalty in fuel economy. In order to evaluate the impact of those penalties on fuel economy, a finite state model for combustion mode switches is combined with a longitudinal vehicle model and a phenomenological TWC model, focused on oxygen storage. The aftertreatment model is calibrated using combustion mode switch experiments from lean HCCI to rich spark-assisted HCCI and back. Fuel and emissions maps acquired in steady state experiments are used. Two depletion strategies are compared in terms of their influence on drive cycle fuel economy and NOx emissions.





2022 ◽  
pp. 146808742110667
Author(s):  
Akhilendra Pratap Singh ◽  
Ashutosh Jena ◽  
Avinash Kumar Agarwal

In the last decade, advanced combustion techniques of the low-temperature combustion (LTC) family have attracted researchers because of their excellent emission characteristics; however, combustion control remains the main issue for the LTC modes. The objective of this study was to explore premixed charge compression ignition (PCCI) combustion mode using a double pilot injection (DPI; pilot-pilot-main) strategy to achieve superior combustion control and to tackle the soot-oxides of nitrogen (NOx) trade-off. Experiments were carried out in a single-cylinder research engine fueled with 20% v/v biodiesel blended with mineral diesel (B20) and 40% v/v biodiesel blended with mineral diesel (B40) vis-à-vis baseline mineral diesel. Engine speed and rate of fuel-mass injected were maintained constant at 1500 rpm and 0.6 kg/h mineral diesel equivalent, respectively. Pilot injection timings (at 45° and 35° before top dead center (bTDC)) and fuel quantities were fixed, while three fuel injection pressures (FIPs) and four different start of the main injection (SoMI) timings were investigated in this study. Results showed that multiple pilot injections resulted in a stable PCCI combustion mode, making it suitable for higher engine loads. For all test fuels, advancing SoMI timings led to relatively lesser knocking; however, engine performance characteristics degraded at advanced SoMI timings. B40 exhibited relatively superior engine performance among different test fuels at lower FIP; however, the difference in engine performance was insignificant at higher FIPs. Fuel injection parameters showed a significant effect on emissions, especially on the NOx and particulates. Advancing SoMI timing resulted in 20%–50% lower particulates emissions with a slight NOx increase; however, the differences in emissions at different SoMI timings reduced at higher FIPs. Somewhat higher particulates from biodiesel blends were a critical observation of this study, which was more dominant at advanced SoMI timings. Qualitative correlation between NOx-total particulate mass (TPM) was another critical analysis, which exhibited the relative importance of different fuel injection parameters for other alternative fuels. Overall, B20 at 700 bar FIP and 20° SoMI timing emerged as the most promising proposition with some penalty in CO emission.



2008 ◽  
Vol 137 (3) ◽  
pp. 636-642 ◽  
Author(s):  
M YAMUKYAN ◽  
K MANUKYAN ◽  
S KHARATYAN


Author(s):  
K. Kamunur ◽  
B. Milihat ◽  
D. Baiseitov ◽  
N. Kudyarova ◽  
A. Isagaliev ◽  
...  


2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2699-2706
Author(s):  
Guoqing Shen

In order to study a new clean and efficient combustion mode, which can relieve the pressure of traditional energy and ensure low emissions, in this study, a diesel/natural gas dual fuel engine is designed by non-dominant sorting genetic algorithm (NSGA-?), and its thermodynamic characteristics are studied. The WP10.290 Diesel engine is modified into a diesel/natural gas dual fuel engine. The emissions of harmful substances and thermal efficiency of the modified engine under different working conditions are compared. The combustion chamber structure and adaptability between combustion chamber and injection parameters are optimized by using NSGA-II algorithm and CFD software. The results show that the emission of NOx and CH4 and the fuel consumption rate can be reduced simultaneously by using the composite combustion model compared with the original engine. When the CH4 emission is close to zero, the fuel consumption rate decreases obviously, and NOx slightly increases. When the angle between the injection holes is 141.57? the amount of NOx in the cylinder is large. When the injection advance angle is 21.91?CA, the pressure in the cylinder is the highest, the CH4 production is the lowest, the NOx production is higher, and the oxygen content in the combustion mixture is less. The NOx production is the lowest. diesel/natural gas dual fuel engine can ensure efficient combustion while reducing emissions. In this study, the performance of the dual fuel engine at various speeds can be further studied, which can provide theoretical support for the design of diesel/natural gas dual fuel engine.



Sign in / Sign up

Export Citation Format

Share Document