Development of a Supersonic Film Cooling Test Facility

Author(s):  
Daanish Maqbool ◽  
Kiran Dellimore ◽  
Christopher Cadou
Keyword(s):  
Author(s):  
Jason Town ◽  
Doug Straub ◽  
James Black ◽  
Karen Thole ◽  
Tom Shih

Effective internal and external cooling of airfoils is key to maintaining component life for efficient gas turbines. Cooling designs have spanned the range from simple internal convective channels to more advanced double-walls with shaped film-cooling holes. This paper describes the development of an internal and external cooling concept for a state-of-the-art cooled turbine blade. These cooling concepts are based on a review of literature and patents, as well as, interactions with academic and industry turbine cooling experts. The cooling configuration selected and described in this paper is referred to as the “baseline” design, since this design will simultaneously be tested with other more advanced blade cooling designs in a rotating turbine test facility using a “rainbow turbine wheel” configuration. For the baseline design, the leading edge is cooled by internal jet impingement and showerhead film cooling. The mid-chord region of the blade contains a three-pass serpentine passage with internal discrete V-shaped trip strips to enhance the internal heat transfer coefficient. The film cooling along the mid-chord of the blade uses multiple rows of shaped diffusion holes. The trailing edge is internally cooled using jet impingement and externally film cooled through partitioned cuts on the pressure side of the blade.


Author(s):  
Carlos R. Gonzalez ◽  
Guillaume F. Bidan ◽  
Jason W. Bitting ◽  
Christopher M. Foreman ◽  
Jean-Philippe Junca-Laplace ◽  
...  

A new cascade wind tunnel has been designed and constructed at the LSU Wind Tunnel Laboratory. The objective was to develop a versatile test facility, suitable for a wide range of experimental studies and measurements on turbine airfoils, especially with regards to film-cooling incorporating realistic unsteady effects due to passing wakes. The test section consists of a four passage linear cascade composed of three full blades and two shaped wall blades. The 2D blade shape profile of the cascade is a high-lift, low-pressure turbine L1A profile provided by the US Air Force Research Laboratories (AFRL), with a 152-mm axial chord. The Reynolds number based on the axial chord length at the nominal freestream velocity of 50 ms−1 is 500,000. A conveyor-based system was designed and fabricated to simulate the passing wakes of the upstream vanes (or blades) on the test blades (or vanes) depending on which airfoil types are put on the stationary frame and the moving frame of the conveyor. The original implementation uses blade profiles on the stationary frame and thick plate wake generators on the translating frame. Results are presented from hot-wire surveys conducted to characterize and qualify the velocity and turbulence intensity distributions and associated spectral characteristics at the cascade test section inlet, in the wake of the vanes and in the wake of the test blade. A blade instrumented with 123 pressure taps was used to acquire static pressure profiles of the cascade central blade, which were compared to the ones from the nominal airfoil design as well as to those obtained from a CFD simulation of the cascade flow. Incoming velocity and temperature profiles were found to be uniform to within a few percentage points, and the pressure coefficient distribution was found to be in good agreement with design values. The passage periodicity of the conveyor-belt-driven, flat-plates was verified and their wake was characterized. These results verified that the cascade wind tunnel operates according to design, thus proving to be a reliable test-bed for film cooling studies with and without unsteady wake effects. The design also incorporates an in-house-designed, miniature periscopic and adjustable laser sheet generating system integrated within the “dummy” blades to enable Particle Image Velocimetry measurements in the intra-blade domain.


Author(s):  
Luca Andrei ◽  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
...  

An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating an high pressure turbine airfoil leading edge cavity. Test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A non uniform mass flow extraction was also imposed to reproduce the effects of pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej = 10000–40000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise and span-wise averaged values of Nusselt number.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Luca Andrei ◽  
Carlo Carcasci ◽  
Riccardo Da Soghe ◽  
Bruno Facchini ◽  
Francesco Maiuolo ◽  
...  

An experimental survey on a state of the art leading edge cooling scheme was performed to evaluate heat transfer coefficients (HTC) on a large scale test facility simulating a high pressure turbine airfoil leading edge cavity. The test section includes a trapezoidal supply channel with three large racetrack impingement holes. On the internal surface of the leading edge, four big fins are placed in order to confine impingement jets. The coolant flow impacts the leading edge internal surface, and it is extracted from the leading edge cavity through 24 showerhead holes and 24 film cooling holes. The aim of the present study is to investigate the combined effects of jet impingement and mass flow extraction on the internal heat transfer of the leading edge. A nonuniform mass flow extraction was also imposed to reproduce the effects of the pressure side and suction side external pressure. Measurements were performed by means of a transient technique using narrow band thermochromic liquid crystals (TLCs). Jet Reynolds number and crossflow conditions into the supply channel were varied in order to cover the typical engine conditions of these cooling systems (Rej=10,000-40,000). Experiments were compared with a numerical analysis on the same test case in order to better understand flow interaction inside the cavity. Results are reported in terms of detailed 2D maps, radial-wise, and span-wise averaged values of Nusselt number.


Author(s):  
Franz Puetz ◽  
Johannes Kneer ◽  
Achmed Schulz ◽  
Hans-Joerg Bauer

An increased demand for lower emission of stationary gas turbines as well as civil aircraft engines has led to new, low emission combustor designs with less liner cooling and a flattened temperature profile at the outlet. As a consequence, the heat load on the endwall of the first nozzle guide vane is increased. The secondary flow field dominates the endwall heat transfer, which also contributes to aerodynamic losses. A promising approach to reduce these losses is non-axisymmetric endwall contouring. The effects of non-axisymmetric endwall contouring on heat transfer and film cooling are yet to be investigated. Therefore, a new cascade test rig has been set up in order to investigate endwall heat transfer and film cooling on both a flat and a non-axisymmetric contoured endwall. Aerodynamic measurements that have been made prior to the upcoming heat transfer investigation are shown. Periodicity and detailed vane Mach number distributions ranging from 0 to 50% span together with the static pressure distribution on the endwall give detailed information about the aerodynamic behavior and influence of the endwall contouring. The aerodynamic study is backed by an oil paint study, which reveals qualitative information on the effect of the contouring on the endwall flow field. Results show that the contouring has a pronounced effect on vane and endwall pressure distribution and on the endwall flow field. The local increase and decrease of velocity and the reduced blade loading towards the endwall is the expected behavior of the 3d contouring. So are the results of the oil paint visualization, which show a strong change of flow field in the leading edge region as well as that the contouring delays the horse shoe vortex hitting the suction side.


Author(s):  
J. Webb ◽  
B. Casaday ◽  
B. Barker ◽  
J. P. Bons ◽  
A. D. Gledhill ◽  
...  

An accelerated deposition test facility was operated with three different coal ash species to study the effect of ash composition on deposition rate and spatial distribution. The facility seeds a combusting (natural gas) flow with 10–20 micron mass mean diameter coal ash particulate. The particulate-laden combustor exhaust is accelerated through a rectangular-to-annular transition duct and expands to ambient pressure through a nozzle guide vane annular sector. For the present study, the annular cascade consisted of two CFM56 aero-engine vane doublets; comprising three full passages and two half passages of flow. The inlet Mach number (0.1) and gas temperature (1100°C) are representative of operating turbines. Ash samples were tested from the three major coal ranks: lignite, subbituminous, and bituminous. Investigations over a range of inlet gas temperatures from 900°C to 1120°C showed that deposition increased with temperature, though the threshold for deposition varied with ash type. Deposition levels varied with coal rank, with lignite producing the largest deposits at the lowest temperature. Regions of heightened deposition were noted; the leading edge and pressure surface being particularly implicated. Scanning electron microscopy was used to identify deposit structure. For a limited subset of tests, film cooling was employed at nominal design operating conditions but provided minimal protection in cases of severe deposition.


Author(s):  
Carlo Carcasci ◽  
Bruno Facchini ◽  
Lorenzo Tarchi ◽  
Nils Ohlendorf

An experimental survey of a leading edge cooling scheme was performed to measure the Nusselt number distribution on a large scale test facility simulating the leading edge cavity of an high pressure turbine blade. Test section is composed by two adjacent cavities, a rectangular supply channel and the leading edge cavity. The cooling flow impinges on the concave leading edge internal walls, by means of an impingement array located between the two cavities, and it is extracted through showerhead and film cooling holes. The impingement geometry is composed by a double array of circular or shaped holes. The aim of the present study is to investigate the heat transfer performance of two optimized impingement schemes in comparison with a standard one with circular and orthogonal holes. Both the optimized arrays have inclined racetrack shaped holes and one of them has also a converging shape. Measurements were performed by means of a transient technique using narrow band Thermo-chromic Liquid Crystals (TLC). Jet Reynolds number was varied in order to cover the typical engine conditions of these cooling systems (Rej = 15000–45000). Results are reported in terms of detailed 2D maps, radial and tangential averaged Nusselt numbers.


2011 ◽  
Vol 134 (4) ◽  
Author(s):  
Weiguo Ai ◽  
Nathan Murray ◽  
Thomas H. Fletcher ◽  
Spencer Harding ◽  
Scott Lewis ◽  
...  

Deposition on film-cooled turbine components was studied in an accelerated test facility. The accelerated deposition facility seeds a natural-gas burning combustor with finely ground coal ash particulate at 1180°C and 180 m/s (M=0.25). Both cylindrical and shaped holes, with and without thermal barrier coating, were studied over a range of blowing ratios from 0.5 to 4.0. Coolant density ratios were maintained at values from 2.1 to 2.4. Deposition patterns generated with the cylindrical film cooling holes indicated regions of low deposition in the path of the coolant with heightened deposition between film holes. This distinctive pattern was more accentuated at higher blowing ratios. Optical temperature measurements of the turbine component surface during deposition showed elevated temperatures between coolant paths. This temperature nonuniformity became more accentuated as deposition increased, highlighting a mechanism for deposition growth that has been documented on in-service turbines as well. The shaped-hole components exhibited little or no deposition in the region just downstream of the holes due to the distributed coolant film. Close cylindrical hole spacing of 2.25d displayed similar behavior to the shaped-hole configuration.


Author(s):  
Donald L. Schmidt ◽  
Basav Sen ◽  
David G. Bogard

Film cooling effectiveness was studied experimentally in a flat plate test facility with zero pressure gradient using a single row of inclined holes which injected high density, cryogenically cooled air. Round holes and holes with a diffusing expanded exit were directed laterally away from the freestream direction with a compound angle of 60°. Comparisons were made with a baseline case of round holes aligned with the freestream. The effects of doubling the hole spacing to six hole diameters for each geometry were also examined. Experiments were performed at a density ratio of 1.6 with a range of blowing ratios from 0.5 to 2.5 and momentum flux ratios from 0.16 to 3.9. Lateral distributions of adiabatic effectiveness results were determined at streamwise distances from 3 D to 15 D downstream of the injection holes. All hole geometries had similar maximum spatially averaged effectiveness at a low momentum flux ratio of I = 0.25, but the round and expanded exit holes with compound angle had significantly greater effectiveness at larger momentum flux ratios. The compound angle holes with expanded exits had a much improved lateral distribution of coolant near the hole for all momentum flux ratios.


Author(s):  
G. E. Andrews ◽  
M. L. Gupta ◽  
M. C. Mkpadi

The development of a test facility for investigating full coverage discrete hole wall cooling for gas turbine combustion chamber wall cooling is described. A low temperature test condition of 750K mainstream temperature and 300K coolant temperature was used to investigate the influence of coolant flow rate at a constant cross flow Mach number. Practical combustion conditions of 2100K combustor temperature and 700K coolant temperature are investigated to establish the validity of applying the low temperature results to practical conditions. For both situations a heat balance programme, taking into account the heat transfer within the wall was used to compute the film heat transfer coefficients. The mixing of the coolant air with the mainstream gases was studied through boundary layer temperature and CO2 profiles. It was shown that entrainment of hot flame gases between the injection holes resulted in a very low ‘adiabatic’ film cooling effectiveness.


Sign in / Sign up

Export Citation Format

Share Document