An Innovative All-Active Hybrid Actuation System Demonstrator

Author(s):  
Tobias Röben ◽  
Eike Stumpf ◽  
Guido Weber ◽  
Thomas Grom
Aerospace ◽  
2004 ◽  
Author(s):  
Tian-Bing Xu ◽  
Ji Su

An electroactive polymer-ceramic hybrid actuation system (HYBAS) was recently developed. The HYBAS demonstrates significantly-enhanced electromechanical performance by utilizing advantages of cooperative contributions of the electromechanical responses of an electrostrictive copolymer and an electroactive single crystal. The hybrid actuation system provides not only a new type of device but also a concept to utilize different electroactive materials in a cooperative and efficient method for optimized electromechanical performance. In order to develop an effective procedure to optimize the performance of a hybrid actuation system (HYBAS), a theoretical model has been developed, based on the elastic and electromechanical properties of the materials utilized in the system and on the configuration of the device. The model also evaluates performance optimization as a function of geometric parameters, including the length of the HYBAS and the thickness ratios of the constituent components. The comparison between the model and the experimental results shows a good agreement and validates the model as an effective method for the further development of high performance actuating devices or systems for various applications.


2018 ◽  
Vol 2018 (13) ◽  
pp. 385-391
Author(s):  
Liu Zidong ◽  
Bai Zhiqiang ◽  
Xu Shuhan

2012 ◽  
Vol 430-432 ◽  
pp. 1914-1917
Author(s):  
Li Ming Yu ◽  
Shou Qiang Wei ◽  
Tian Tian Xing ◽  
Hong Liang Liu

Generalized stochastic Petri nets is adopted to develop the reliability models of two operating modes of the hybrid actuation system, which is composed of a SHA (Servo valve controlled Hydraulic Actuator), an EHA (Electro-Hydrostatic Actuator) and an EBHA (Electrical Back-up Hydrostatic Actuator).The dependability of hybrid actuation is got through the Markov chain which the Petri nets sate is isomorphic to and the Monte-Carlo simulation. Simulations are conducted to analyze influences of the operating mode and the fault coverage on system reliability of hybrid actuation system.


2017 ◽  
Vol 260 ◽  
pp. 85-91 ◽  
Author(s):  
Gurvan Jodin ◽  
Johannes Scheller ◽  
Eric Duhayon ◽  
Jean François Rouchon ◽  
Marianna Braza

Amongst current aircraft research topics, morphing wing is of great interest for improving the aerodynamic performance. A morphing wing prototype has been designed for wind tunnel experiments. The rear part of the wing - corresponding to the retracted flap - is actuated via a hybrid actuation system using both low frequency camber control and a high frequency vibrating trailing edge. The camber is modified via surface embedded shape memory alloys. The trailing edge vibrates thanks to piezoelectric macro-fiber composites. The actuated camber, amplitude and frequency ranges are characterized. To accurately control the camber, six independent shape memory alloy wires are controlled through nested closed-loops. A significant reduction in power consumption is possible via this control strategy. The effects on flow via morphing have been measured during wind tunnel experiments. This low scale mock-up aims to demonstrate the hybrid morphing concept, according to actuator capabilities point of view as well as aerodynamic performance.


2007 ◽  
Author(s):  
Benjamin J. Nickless ◽  
Ji Su ◽  
Tian-Bing Xu ◽  
James E. Hubbard, Jr.

Author(s):  
Kaveh Jalili ◽  
Yaoyu Li ◽  
Mario A. Rotea

Platform stabilization and load reduction are of great importance for the successful development of floating offshore wind turbines. The increased degrees-of-freedom (DOF) for the relevant dynamics presents the challenge of underactuation. Recently, a tuned-mass damper (TMD) and active vane have been proposed to control the pitch and roll motions of a floating turbine platform. Simulations have indicated that TMD in the fore-aft (FA) direction cannot reduce the damage equivalent load (DEQL) for the side-to-side (SS) bending moment at the tower-base across all the loading conditions. In this study, the TMD in the FA direction is combined with an active vertical vane to reduce both the FA and SS platform motions and DEQLs. We refer to this combined system of actuation as the “hybrid actuation system”. The effectiveness of this hybrid scheme is demonstrated via simulations which are carried out in accordance with the IEC 61400-3 standard design load case 1.2–fatigue load testing.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Anirban Chaudhuri ◽  
Norman M. Wereley

The basic operation of smart material-based hybrid electrohydraulic actuators involves high frequency bidirectional length change in an active material stack (or rod) that is converted to unidirectional motion of a hydraulic fluid by a set of valves. In this study, we present the design and measured performance of a compact hybrid actuation system driven by the single-crystal electrostrictive material PMN-32%PT. The active material was actuated at different frequencies with variations in the applied voltage, fluid bias pressure, and external load to study the effects on output velocity. The maximum actuator velocity was 330 mm/s and the corresponding flow rate was 42.5 cc/s; the blocked force of the actuator was 63 N. The results of the experiments are presented and compared with simulation data to validate a nonlinear time-domain model. Linearized equations were used to represent the active material while the inertia, viscous losses, and compressibility of the fluid were included using differential equations. Factors affecting system performance are identified and the inclusion of fluid inertia in the model is also justified.


Sign in / Sign up

Export Citation Format

Share Document