Porous Wall and Screen Simulation Capability in Kestrel

2022 ◽  
Author(s):  
Robert H. Nichols
Keyword(s):  
Author(s):  
Talat Rafiq ◽  
M Mustafa ◽  
Junaid Ahmad Khan

This research features one parameter family of solutions representing rotationally symmetric flow of non-Newtonian fluid obeying Reiner-Rivlin model. Such flows take place over a revolving plane permeable surface through origin such that fluid at infinity also undergoes uniform rotation about the vertical axis. Heat transfer accompanied with viscous heating effect is also analyzed. A similarity solution is proposed that results into a coupled non-linear system with four unknowns. Boundary layer structure is characterized by a parameter [Formula: see text] that compares angular velocity of external flow with that of the rotating surface. Solutions are developed by a well-known package bvp4c of MATLAB for full range of [Formula: see text]. Flow pattern for different choices of [Formula: see text] is scrutinized by computing both 2 D and 3 D streamlines. It is further noted that value of suction velocity is important with regards to the sign of axial velocity component. Boundary layer suppresses considerably whenever the surface is permeable. For sufficiently high suction velocity with [Formula: see text], entire fluid undergoes rigid body rotation. In no suction case, axially upward flow accelerates for increasing values of parameter [Formula: see text] in the range [Formula: see text], whereas opposite trend is apparent in the case [Formula: see text]. Results for normalized wall shear and Nusselt number are scrutinized for various choices of embedded parameters.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
R. Ponalagusamy ◽  
Ramakrishna Manchi

AbstractThe present communication presents a theoretical study of blood flow through a stenotic artery with a porous wall comprising Brinkman and Darcy layers. The governing equations describing the flow subjected to the boundary conditions have been solved analytically under the low Reynolds number and mild stenosis assumptions. Some special cases of the problem are also presented mathematically. The significant effects of the rheology of blood and porous wall of the artery on physiological flow quantities have been investigated. The results reveal that the wall shear stress at the stenotic throat increases dramatically for the thinner porous wall (i.e. smaller values of the Brinkman and Darcy regions) and the rate of increase is found to be 18.46% while it decreases for the thicker porous wall (i.e. higher values of the Brinkman and Darcy regions) and the rate of decrease is found to be 10.21%. Further, the streamline pattern in the stenotic region has been plotted and discussed.


2013 ◽  
Vol 2 (4) ◽  
pp. 254-262 ◽  
Author(s):  
M. Hosseini ◽  
Z. Sheikholeslami ◽  
D.D. Ganji

1970 ◽  
Vol 92 (3) ◽  
pp. 257-266
Author(s):  
D. A. Nealy ◽  
P. W. McFadden

Using the integral form of the laminar boundary layer thermal energy equation, a method is developed which permits calculation of thermal boundary layer development under more general conditions than heretofore treated in the literature. The local Stanton number is expressed in terms of the thermal convection thickness which reflects the cumulative effects of variable free stream velocity, surface temperature, and injection rate on boundary layer development. The boundary layer calculation is combined with the wall heat transfer problem through a coolant heat balance which includes the effect of axial conduction in the wall. The highly coupled boundary layer and wall heat balance equations are solved simultaneously using relatively straightforward numerical integration techniques. Calculated results exhibit good agreement with existing analytical and experimental results. The present results indicate that nonisothermal wall and axial conduction effects significantly affect local heat transfer rates.


2010 ◽  
Vol 5 (3) ◽  
pp. 38-46
Author(s):  
Vladimir I. Kornilov ◽  
Andrey V. Boiko

The effect of air microblowing through a porous wall on the properties of a turbulent boundary layer formed on a flat plate in an incompressible flow is studied experimentally. The Reynolds number based on the momentum thickness of the boundary layer in front of the porous insert is 3 900. The mass flow rate of the blowing air per unit area was varied within Q = 0−0.0488 кg/s/m2 . A consistent decrease in local skin friction, reaching up to 45−47 %, is observed to occur at the maximal blowing air mass flow rate studied.


Vacuum ◽  
2021 ◽  
pp. 110667
Author(s):  
Kai Li ◽  
Gabriel M. Veith ◽  
Meghan E. Lamm ◽  
Annie Stevens ◽  
Tej Lamichhane ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document