scholarly journals Hybrid RANS-LES of the Atmospheric Boundary Layer for Wind Farm Simulations

2022 ◽  
Author(s):  
Christiane Adcock ◽  
Marc Henry de Frahan ◽  
Jeremy Melvin ◽  
Ganesh Vijayakumar ◽  
Shreyas Ananthan ◽  
...  
Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2071
Author(s):  
Brian Fiedler

The simplest model for an atmospheric boundary layer assumes a uniform steady wind over a certain depth, of order 1 km, with the forces of friction, pressure gradient and Coriolis in balance. A linear model is here employed for the adjustment of wind to this equilibrium, as the wake of a very wide wind farm. A length scale is predicted for the exponential adjustment to equilibrium. Calculation of this length scale is aided by knowledge of the angle for which the wind would normally cross the isobars in environmental conditions in the wake.


2021 ◽  
Vol 6 (3) ◽  
pp. 777-790
Author(s):  
Maarten Paul van der Laan ◽  
Mark Kelly ◽  
Mads Baungaard

Abstract. Idealized models of the atmospheric boundary layer (ABL) can be used to leverage understanding of the interaction between the ABL and wind farms towards the improvement of wind farm flow modeling. We propose a pressure-driven one-dimensional ABL model without wind veer, which can be used as an inflow model for three-dimensional wind farm simulations to separately demonstrate the impact of wind veer and ABL depth. The model is derived from the horizontal momentum equations and follows both Rossby and Reynolds number similarity; use of such similarity reduces computation time and allows rational comparison between different conditions. The proposed ABL model compares well with solutions of the mean momentum equations that include wind veer if the forcing variable is employed as a free parameter.


2015 ◽  
Vol 124 ◽  
pp. 239-251 ◽  
Author(s):  
A. Gargallo-Peiró ◽  
M. Avila ◽  
H. Owen ◽  
L. Prieto ◽  
A. Folch

Author(s):  
Myra L. Blaylock ◽  
Brent C. Houchens ◽  
David C. Maniaci ◽  
Thomas Herges ◽  
Alan Hsieh ◽  
...  

Abstract Power production of the turbines at the Department of Energy/Sandia National Laboratories Scaled Wind Farm Technology (SWiFT) facility located at the Texas Tech University’s National Wind Institute Research Center was measured experimentally and simulated for neutral atmospheric boundary layer operating conditions. Two V27 wind turbines were aligned in series with the dominant wind direction, and the upwind turbine was yawed to investigate the impact of wake steering on the downwind turbine. Two conditions were investigated, including that of the leading turbine operating alone and both turbines operating in series. The field measurements include meteorological evaluation tower (MET) data and light detection and ranging (lidar) data. Computations were performed by coupling large eddy simulations (LES) in the three-dimensional, transient code Nalu-Wind with engineering actuator line models of the turbines from OpenFAST. The simulations consist of a coarse precursor without the turbines to set up an atmospheric boundary layer inflow followed by a simulation with refinement near the turbines. Good agreement between simulations and field data are shown. These results demonstrate that Nalu-Wind holds the promise for the prediction of wind plant power and loads for a range of yaw conditions.


2020 ◽  
Author(s):  
Michael F. Howland ◽  
Aditya S. Ghate ◽  
Sanjiva K. Lele ◽  
John O. Dabiri

Abstract. Strategies for wake loss mitigation through the use of dynamic closed-loop wake steering are investigated using large eddy simulations of conventionally neutral atmospheric boundary layer conditions, where the neutral boundary layer is capped by an inversion and a stable free atmosphere. The closed-loop controller synthesized in this study consists of a physics-based lifting line wake model combined with a data-driven Ensemble Kalman filter state estimation technique to calibrate the wake model as a function of time in a generalized transient atmospheric flow environment. Computationally efficient gradient ascent yaw misalignment selection along with efficient state estimation enables the dynamic yaw calculation for real-time wind farm control. The wake steering controller is tested in a six turbine array embedded in a quasi-stationary conventionally neutral flow with geostrophic forcing and Coriolis effects included. The controller increases power production compared to baseline, greedy, yaw-aligned control although the magnitude of success of the controller depends on the state estimation architecture and the wind farm layout. The influence of the model for the coefficient of power Cp as a function of the yaw misalignment is characterized. Errors in estimation of the power reduction as a function of yaw misalignment are shown to result in yaw steering configurations that under-perform the baseline yaw aligned configuration. Overestimating the power reduction due to yaw misalignment leads to increased power over greedy operation while underestimating the power reduction leads to decreased power, and therefore, in an application where the influence of yaw misalignment on Cp is unknown, a conservative estimate should be taken. Sensitivity analyses on the controller architecture, coefficient of power model, wind farm layout, and atmospheric boundary layer state are performed to assess benefits and trade-offs in the design of a wake steering controller for utility-scale application. The physics-based wake model with data assimilation predicts the power production in yaw misalignment with a mean absolute error over the turbines in the farm of 0.02 P1, with P1 as the power of the leading turbine at the farm, whereas a physics-based wake model with wake spreading based on an empirical turbulence intensity relationship leads to a mean absolute error of 0.11 P1.


Author(s):  
Tanmoy Chatterjee ◽  
Yulia T. Peet

Large scale coherent structures in atmospheric boundary layer (ABL) are known to contribute to the power generation in wind farms. In the current paper, we perform a detailed analysis of the large scale structures in a finite sized wind turbine canopy using modal analysis from three dimensional proper orthogonal decomposition (POD). While POD analysis sheds light on the large scale coherent modes and scaling laws of the eigenspectra, we also observe a slow convergence of the spectral trends with the available number of snapshots. Since the finite sized array is periodic in the spanwise direction, we propose to adapt a novel approach of performing POD analysis of the spanwise/lateral Fourier transformed velocity snapshots instead of the snapshots themselves. This methodology not only helps in decoupling the length scales in the spanwise and the streamwise direction when studying the energetic coherent modes, but also provides a detailed guidance towards understanding the convergence of the eigenspectra. In particular, the Fourier-POD eigenspectra helps us illustrate if the dominant scaling laws observed in 3D POD are actually contributed by the laterally wider or thinner structures and provide more detailed insight on the structures themselves. We use the database from our previous large eddy simulation (LES) studies on finite-sized wind farms which uses wall-modeled LES for modeling the Atmospheric boundary layer laws, and actuator lines for the turbine blades. Understanding the behaviour of such structures would not only help better assess reduced order models (ROM) for forecasting the flow and power generation but would also play a vital role in improving the decision making abilities in wind farm optimization algorithms in future. Additionally, this study also provides guidance for better understanding the POD analysis in the turbulence and wind farm community.


2019 ◽  
pp. 0309524X1988092
Author(s):  
Mohamed Marouan Ichenial ◽  
Abdellah El-Hajjaji ◽  
Abdellatif Khamlichi

The assessment of climatological site conditions, airflow characteristics, and the turbulence affecting wind turbines is an important phase in developing wake engineering models. A method of modeling atmospheric boundary layer structure under atmospheric stability effects is crucial for accurate evaluation of the spatial scale of modern wind turbines, but by themselves, they are incapable to account for the varying large-scale weather conditions. As a result, combining lower atmospheric models with mesoscale models is required. In order to realize a reasonable approximation of initial atmospheric inflow condition used for wake identification behind an NREL 5-MW wind turbine, different vertical wind profile models on equilibrium conditions are tested and evaluated in this article. Wind farm simulator solvers require massive computing resources and forcing mechanisms tendencies inputs from weather forecast models. A three-dimensional Flow Redirection and Induction in Steady-state engineering model was developed for simulating and optimizing the wake losses of different rows of wind turbines under different stability stratifications. The obtained results were compared to high-fidelity simulation data generated by the famous Simulator for Wind Farm Applications. This work showed that a significant improvement related to atmospheric boundary layer structure can be made to develop accurate engineering wake models in order to reduce wake losses.


Sign in / Sign up

Export Citation Format

Share Document