scholarly journals The philosophical foundations of quantum computer modeling

2019 ◽  
Vol 17 (4) ◽  
pp. 85-92
Author(s):  
Anna Yu. Storozhuk

The source of some problems of the quantum mechanics is the observer’s influence on the system. In particular, such problems include the reduction wave function, which forces physicists to talk about “hidden parameters” and the incompleteness of quantum mechanics. Measurements of a quantum system violate its internal state and make it impossible to obtain information about its other parameters (Heisenberg’s uncertainty principle). In 1980 there appeared the thesis that since modeling the behavior of a quantum system on a classical computer cannot provide sufficient accuracy for reproducing all its parameters, there is a need for a quantum computer. The question arises: to what degree can a quantum computer help to solve traditional epistemological problems of quantum mechanics? Can modelling the behavior of elementary particles on a quantum computer “bypass” the problem of the observer’s influence on the system? In other words, is it possible to obtain information about the behavior of a quantum system without observation? Will the internal state of the simulated system be preserved?

2013 ◽  
Vol 1 (1) ◽  
pp. 91-100 ◽  
Author(s):  
Yongjian Han ◽  
Zhen Wang ◽  
Guang-Can Guo

Abstract The behavior of individual microscopic particles, such as an atom (or a photon), predicted using quantum mechanics, is dramatically different from the behavior of classical particles, such as a planet, determined using classical mechanics. How can the counter-intuitive behavior of the microscopic particle be verified and manipulated experimentally? David Wineland and Serge Haroche, who were awarded the Nobel Prize in physics in 2012, developed a set of methods to isolate the ions and photons from their environment to create a genuine quantum system. Furthermore, they also developed methods to measure and manipulate these quantum systems, which open a path not only to explore the fundamental principles of quantum mechanics, but also to develop a much faster computer: a quantum computer.


Author(s):  
Frank S. Levin

The subject of Chapter 8 is the fundamental principles of quantum theory, the abstract extension of quantum mechanics. Two of the entities explored are kets and operators, with kets being representations of quantum states as well as a source of wave functions. The quantum box and quantum spin kets are specified, as are the quantum numbers that identify them. Operators are introduced and defined in part as the symbolic representations of observable quantities such as position, momentum and quantum spin. Eigenvalues and eigenkets are defined and discussed, with the former identified as the possible outcomes of a measurement. Bras, the counterpart to kets, are introduced as the means of forming probability amplitudes from kets. Products of operators are examined, as is their role underpinning Heisenberg’s Uncertainty Principle. A variety of symbol manipulations are presented. How measurements are believed to collapse linear superpositions to one term of the sum is explored.


2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 51 (3) ◽  
Author(s):  
Gerard ’t Hooft

AbstractFast moving classical variables can generate quantum mechanical behavior. We demonstrate how this can happen in a model. The key point is that in classically (ontologically) evolving systems one can still define a conserved quantum energy. For the fast variables, the energy levels are far separated, such that one may assume these variables to stay in their ground state. This forces them to be entangled, so that, consequently, the slow variables are entangled as well. The fast variables could be the vacuum fluctuations caused by unknown super heavy particles. The emerging quantum effects in the light particles are expressed by a Hamiltonian that can have almost any form. The entire system is ontological, and yet allows one to generate interference effects in computer models. This seemed to lead to an inexplicable paradox, which is now resolved: exactly what happens in our models if we run a quantum interference experiment in a classical computer is explained. The restriction that very fast variables stay predominantly in their ground state appears to be due to smearing of the physical states in the time direction, preventing their direct detection. Discussions are added of the emergence of quantum mechanics, and the ontology of an EPR/Bell Gedanken experiment.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
S. Leontica ◽  
F. Tennie ◽  
T. Farrow

AbstractSimulating the behaviour of complex quantum systems is impossible on classical supercomputers due to the exponential scaling of the number of quantum states with the number of particles in the simulated system. Quantum computers aim to break through this limit by using one quantum system to simulate another quantum system. Although in their infancy, they are a promising tool for applied fields seeking to simulate quantum interactions in complex atomic and molecular structures. Here, we show an efficient technique for transpiling the unitary evolution of quantum systems into the language of universal quantum computation using the IBM quantum computer and show that it is a viable tool for compiling near-term quantum simulation algorithms. We develop code that decomposes arbitrary 3-qubit gates and implement it in a quantum simulation first for a linear ordered chain to highlight the generality of the approach, and second, for a complex molecule. We choose the Fenna-Matthews-Olsen (FMO) photosynthetic protein because it has a well characterised Hamiltonian and presents a complex dissipative system coupled to a noisy environment that helps to improve the efficiency of energy transport. The method can be implemented in a broad range of molecular and other simulation settings.


2014 ◽  
Vol 1078 ◽  
pp. 413-416
Author(s):  
Hai Yan Liu

The ultimate goal of quantum calculation is to build high performance practical quantum computers. With quantum mechanics model of computer information coding and computational principle, it is proved in theory to be able to simulate the classical computer is currently completely, and with more classical computer, quantum computation is one of the most popular fields in physics research in recent ten years, has formed a set of quantum physics, mathematics. This paper to electronic spin doped fullerene quantum aided calculation scheme, we through the comprehensive use of logic based network and based on the overall control of the two kinds of quantum computing model, solve the addressing problem of nuclear spin, avoids the technical difficulties of pre-existing. We expect the final realization of the quantum computer will depend on the integrated use of in a variety of quantum computing model and physical realization system, and our primary work shows this feature..


Author(s):  
Anurag Chapagain

Abstract: It is a well-known fact in physics that classical mechanics describes the macro-world, and quantum mechanics describes the atomic and sub-atomic world. However, principles of quantum mechanics, such as Heisenberg’s Uncertainty Principle, can create visible real-life effects. One of the most commonly known of those effects is the stability problem, whereby a one-dimensional point base object in a gravity environment cannot remain stable beyond a time frame. This paper expands the stability question from 1- dimensional rod to 2-dimensional highly symmetrical structures, such as an even-sided polygon. Using principles of classical mechanics, and Heisenberg’s uncertainty principle, a stability equation is derived. The stability problem is discussed both quantitatively as well as qualitatively. Using the graphical analysis of the result, the relation between stability time and the number of sides of polygon is determined. In an environment with gravity forces only existing, it is determined that stability increases with the number of sides of a polygon. Using the equation to find results for circles, it was found that a circle has the highest degree of stability. These results and the numerical calculation can be utilized for architectural purposes and high-precision experiments. The result is also helpful for minimizing the perception that quantum mechanical effects have no visible effects other than in the atomic, and subatomic world. Keywords: Quantum mechanics, Heisenberg Uncertainty principle, degree of stability, polygon, the highest degree of stability


d'CARTESIAN ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 8
Author(s):  
Aisya Putri ◽  
Jullia Titaley ◽  
Benny Pinontoan

On a classical computer or a binary computer, calculations are done simultaneously so as to produce the equations and algorithms. The result of this research shows that to determined maximum value specified in the algorithm using quantum Guarded-Command Language (qGCl) in quantum computer. Initially determine of maximum value was construct in Djikstra’s Guarded-Command Language (GCL) which is then implemented on Zuliani’s probability Guarded-Command Language (pGCL) furthermore applying to quantum Guarded-Command Language (qGCL) for last result. Of concern here is the speed in resolving a problem or calculate problem. Due to the Quantum Computer has a Quantum Bit (qubit) and a phenomenon commonly called superposition. Keywords: GCL, pGCL, qGCL, quantum computer.


2021 ◽  
Author(s):  
Muhammad Yasin

In 1927 Heisenberg has invented the uncertainty principle. The principle of uncertainty is, "It is impossible to determine the position and momentum of a particle at the same time."The more accurately the momentum is measured, the more uncertain the position will be. Just knowing the position would make the momentum uncertain. Einstein was adamant against this principle until his death. He thought that particles have some secret rules. Einstein thought, "The uncertainty principle is incomplete. There is a mistake somewhere that has resulted in uncertainty. Many did not accept Einstein then. But I'm sure Einstein was right then, there are secret rules for particles. Heisenberg's uncertainty principle is also 100% correct . I recently published a research paper named "Quantum Certainty Mechanics"[1], which shows the principle of measuring the momentum and position of particles by the quantum certainty principle. Why uncertainty comes from certainty is the main topic of this research paper. When the value of the energy absorbed by the electron in the laboratory is calculated, the uncertainty is removed. The details are discussed below.


2020 ◽  
Author(s):  
Vasil Dinev Penchev

Any computer can create a model of reality. The hypothesis that quantum computer can generate such a model designated as quantum, which coincides with the modeled reality, is discussed. Its reasons are the theorems about the absence of “hidden variables” in quantum mechanics. The quantum modeling requires the axiom of choice. The following conclusions are deduced from the hypothesis. A quantum model unlike a classical model can coincide with reality. Reality can be interpreted as a quantum computer. The physical processes represent computations of the quantum computer. Quantum information is the real fundament of the world. The conception of quantum computer unifies physics and mathematics and thus the material and the ideal world. Quantum computer is a non-Turing machine in principle. Any quantum computing can be interpreted as an infinite classical computational process of a Turing machine. Quantum computer introduces the notion of “actually infinite computational process”. The discussed hypothesis is consistent with all quantum mechanics. The conclusions address a form of neo-Pythagoreanism: Unifying the mathematical and physical, quantum computer is situated in an intermediate domain of their mutual transformations.


Sign in / Sign up

Export Citation Format

Share Document