scholarly journals Effects of growing temperatures and day length on flower bud initiation and development in sweet pepper.

1990 ◽  
Vol 28 (4) ◽  
pp. 155-164
Author(s):  
Yukihiro FUJIME ◽  
Fu-Chang GUO ◽  
Kazumasa KAKIBUCHI ◽  
Tadahiko HIROSE
HortScience ◽  
2011 ◽  
Vol 46 (3) ◽  
pp. 396-401 ◽  
Author(s):  
Nicacio Cruz-Huerta ◽  
Jeffrey G. Williamson ◽  
Rebecca L. Darnell

Cool night temperatures have been reported to induce ovary swelling and consequent fruit deformation in bell pepper (Capsicum annuum L.), resulting in unmarketable fruit. This response is a serious limitation to the success of winter production systems for bell pepper. Limited work has been done with other types of sweet pepper, so it is unknown how universal this response is. Furthermore, most prior work has examined effects on ovary diameter only, and there is limited characterization of other ovary traits in response to cool night temperature. The objectives of the present study were to determine the effects of low night temperature on ovary characteristics in different sweet pepper cultivars and to determine the parts of the ovary that are most affected by these factors. Three types of sweet pepper (bell, long-fruited, and cherry) were exposed to 22/20 or 22/12 °C day:night temperatures and flowers at anthesis were continuously harvested throughout the experiments. Ovary fresh weight (FW), diameter, and length across all types (and cultivars within type) were greater under 22/12 °C compared with 22/20 °C. The increase in ovary FW was the result of increases in both ovary wall and placenta FW. In general, all cultivars exhibited increases in ovary size under 12 °C compared with 20 °C night temperature. Differences in ovary FW resulting from night temperature became more pronounced with time. These results indicate that low night temperature effects on ovary swelling may be a universal response among sweet pepper types. Three to 4 weeks are required for maximum swelling response, suggesting that flower buds must be exposed to low night temperatures within the first week after flower bud initiation, because previous work found that flower bud initiation in bell pepper takes ≈4 weeks. However, the duration of low night temperatures necessary for this response remains unknown.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 553b-553
Author(s):  
Esmaeil Fallahi

Early thinning of apples is important because of its impact on fruit size and next season's flower bud initiation. In the past, apple cultivars were often sprayed with the blossom thinner sodium dinitro-ortho-cresol(Elgetol) during full bloom, followed by a post-bloom application of a fruit thinner such as carbaryl with or without naphthalene acetic acid (NAA). Elgetol was removed from the market in 1989 because of the high cost of re-registration. Full-bloom sprays of sulfcarbamide (Wilthin), pelargonic acid (Thinex), and endothalic acid (Endothal), ammonium thiosulfate (ATS) or petal fall spray of carbaryl (Sevin XLR Plus) were developed as replacements for Elgetol. Hydrogen cyanamide (HC) and other chemicals have been used to eliminate or to reduce chilling requirements of peaches grown under the warm desert conditions. HC applied at “pink bloom” stage was observed to reduce the number of open blooms in `Florda Prince' peach; therefore, it was first used for blossom thinning in this cultivar in Arizona. Later, HC was also found to be an effective blossom thinner for plums in Idaho. HC has recently been found to effectively thin apple and peach blossoms. Armothin has also been an effective blossom thinner for peach in California.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 447d-447
Author(s):  
Meriam Karlsson ◽  
Jeffrey Werner

Nine-week-old plants of Cyclamen persicum `Miracle Salmon' were transplanted into 10-cm pots and placed in growth chambers at 8, 12, 16, 20, or 24 °C. The irradiance was 10 mol/day per m2 during a 16-h day length. After 8 weeks, the temperature was changed to 16 °C for all plants. Expanded leaves (1 cm or larger) were counted at weekly intervals for each plant. The rate of leaf unfolding increased with temperature to 20 °C. The fastest rate at 20 °C was 0.34 ± 0.05 leaf/day. Flower buds were visible 55 ± 7 days from start of temperature treatments (118 days from seeding) for the plants grown at 12, 16, or 20 °C. Flower buds appeared 60 ± 6.9 days from initiation of treatments for plants grown at 24 °C and 93 ± 8.9 days for cyclamens grown at 8 °C. Although there was no significant difference in rate of flower bud appearance for cyclamens grown at 12, 16, or 20 °C, the number of leaves, flowers, and flower buds varied significantly among all temperature treatments. Leaf number at flowering increased from 38 ± 4.7 for plants at 12 °C to 77 ± 8.3 at 24 °C. Flowers and flower buds increased from 18 ± 2.9 to 52 ± 11.0 as temperature increased from 12 to 24 °C. Plants grown at 8 °C had on average 6 ± 2 visible flower buds, but no open flowers at termination of the study (128 days from start of treatments).


1987 ◽  
Vol 65 (1) ◽  
pp. 137-142 ◽  
Author(s):  
Saïda Ammar ◽  
Abdellatif Benbadis ◽  
Bal Krishna Tripathi

Flower bud initiation in 5-month-old seedlings of date palm (Phoenix dactylifera L. var. Deglet Nour) was studied under controlled conditions. Normally inflorescence formation in mature plants takes 8 to 10 years. In juvenile plants inflorescence formation was induced in a 16-h day at 28 °C, by a combination of 6-benzylaminopurine, indoleacetic acid, and glucose or sucrose. The present investigation has determined favourable cultural conditions for floral induction in date palm in vitro at a very early stage of ontogeny. Both male and female flowers were induced on young plants. Floral induction usually occurred only when root formation was completely inhibited. The apparent antagonism between root formation and floral development suggests a possible competition in the young plant for growth substances, although production of floral inhibitory substances from the root cannot be precluded. These observations on the induction of precocious flowering in date palm seedlings suggest a model of development, corresponding to neoteny, of this tree as an herb.


2013 ◽  
Vol 40 (4) ◽  
pp. 297-303
Author(s):  
Young Soon Kwon ◽  
Seong Youl Choi ◽  
Mi Jung Kil ◽  
Bong Sik You ◽  
Jae A Jung ◽  
...  

1978 ◽  
Vol 26 (1) ◽  
pp. 119-127
Author(s):  
D.P. de Vries ◽  
L. Smeets

As a basis for breeding cvs adapted to flowering in winter light conditions, the growth of hybrid tea rose seedlings under controlled conditions was studied. Irradiance varied from 4-24 W/m2, day length was 8 h, temperature 21 deg C. Like cvs, the seedlings sometimes aborted the flower bud at low light intensity. With increasing irradiances, the following phenomena were observed: the juvenile period of the seedlings shortened; plants were longer at bud formation, at first flowering and at flower bud abortion; leaf area and the number of petals increased. Leaf number was constant at all irradiances. Flowering seedlings were smaller at bud formation, but taller at actual flowering than blind ones. Blind seedlings had fewer leaves with a smaller area. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2014 ◽  
Vol 17 (6) ◽  
pp. 491-495
Author(s):  
Young Soon Kwon ◽  
◽  
Hak Ki Shin ◽  
Bong Sik You ◽  
Jae A Jung ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 914
Author(s):  
Susanna Bartolini ◽  
Ermes Lo Piccolo ◽  
Damiano Remorini

In deciduous fruit species, floral bud initiation, differentiation and organogenesis take place during the summer–autumn season that precedes anthesis. Among factors able to modify the regularity of these processes, water availability represents a crucial aspect. This investigation aimed to assess the influence of different summer and autumn water deficit and re-watering treatments on floral morphogenesis, xylem vessel differentiation and quality of flower buds. Trials were carried out on two-year-old potted apricot trees (cv. ‘Portici’) which were submitted to different regimes: (i) fully irrigated plants; (ii) stressed plants in June (S1), July (S2) and October (S3) followed to re-watering. Midday stem water potential was used to determine water status, and leaf gas exchanges were measured during trials. Histological analyses on floral differentiation, xylem progression within flower buds and biological observations were carried out. Both summer water stress periods affected the floral differentiation leading to a temporary shutdown. The S1 trees were able to recover the development of meristematic apices while S2 had a strong delay. All drought treatments caused a slower xylem progression, variations in bud size, blooming entity and flower anomalies. Results particularly highlights the importance of water availability also in early autumn.


Sign in / Sign up

Export Citation Format

Share Document