scholarly journals Optimization Performance and Physical Stability of Ciprofloxacin HCL-Ca Alginate Microspheres: Effect of Different Concentration of Alginate and CaCl2

2020 ◽  
Vol 10 (01) ◽  
pp. 89-94
Author(s):  
Hariyadi DM ◽  
Hendradi E

Inhalation treatment using antibiotics is an alternative for lung delivery. However, the therapeutic efficacy of inhaled drugs is limited by their rapid clearance in the lungs. Sustained release systems in the lungs can improve therapeutic outcomes of drugs because they can retain the drug load within the lungs and progressively release the drug locally at therapeutic levels. This study presents the formulation strategies to control drug release in the lungs using an alginate polymer-based microspheres system. The microsphere’s composition can be adjusted to modulate release and can encapsulate compounds with high loading. The pulmonary route is commonly used and has been well accepted as a portal for non-invasive drug delivery for many lung diseases. It is explored for decades as an alternative for systemic as well as local drug delivery. The present study explored the in vitro benefits of ciprofloxacin encapsulated in alginate microspheres. The studies included size, morphology, yield, drug loading, and encapsulation efficiency as well as stability. Current results showed small, smooth, and spherical ciprofloxacin-alginate microspheres were produced using aerosolization techniques. Small particles of less than 5μm were formed, which suitable for inhalation particles for lung delivery. High entrapment efficiency up to 95%, loadings of 80%, and a yield of 89% were also showed from microspheres. It was confirmed that all microspheres were stably indicated by no significant changes in morphology, organoleptic, and drug content after 30 days of storage. The recent promising characteristics of microspheres for pulmonary delivery will need further evaluation of the potency against microorganisms in lung disease.

Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


Author(s):  
Sanjoy Das ◽  
Malay K. Das

Objective: Site-specific drug delivery into the colonic region is extremely fascinating for local treatment of various colonic diseases like ulcerative colitis, colon cancer but it should be capable of saving the drug from hydrolysis and degradation. The present study reports the application of jackfruit seed starch and its thiol derivative as a drug delivery carrier for the colon. Methods: The starch was extracted from the jackfruit seeds by water extraction method and modified by the esterification reaction with thioglycolic acid. The thiolated starch was characterized for morphology, functional and flow properties. The safety profile of the thiolated starch was confirmed by acute toxicity study in a mice model as per OECD guidelines 423. The microspheres based on thiolated starch were prepared by ionic gelation method incorporating Ibuprofen as a model drug. The prepared microspheres were characterized for particle size, drug entrapment efficiency, drug loading, compatibility study, surface morphology, in vitro drug release and release kinetics. Results: The result attributed that starch was successfully modified by the thiolation with a degree of substitution of 3.30. The size of prepared microspheres ranges from 825.5±4.58 to 857±6.24 µm, the entrapment efficiencies ranges from 69.23±1.19 to 76.15±0.83 % and the drug loading capacity ranges from 17.75±0.30 to 46.05±0.49 %. The FT-IR, DSC and XRD studies confirmed that there is no interaction within drug and excipients. The thiolated starch microspheres show the maximum release of drug at pH 7.4 in the presence of rat caecal content as compared to pH 1.2 and pH 6.8 for up to 24 h and are following first order release kinetics. Conclusion: These results suggest the application of thiolated jackfruit seed starch could be promising as a long-term drug delivery carrier for the colon.


Author(s):  
Popat Kumbhar ◽  
Tejaswini Shinde ◽  
Tejaswini Jadhav ◽  
Tejas Gavade ◽  
Rushikesh Sorate ◽  
...  

Vesicular drug delivery systems including niososmes, liposomes, pharmacosomes, transferosomes, electrosomes, ethosomes, etc have been widely accepted for controlled delivery of the drug. Amongst, all these drug delivery systems pharmacosomes are gaining more attention of the researchers due to several benefits such as high entrapment efficiency, improved biopharmaceutical properties, and pharmacokinetic performance, no leakage or loss of drug, stability, etc. Pharmacosomes are amphiphilic phospholipid complexes of drugs having active hydrogen that bind to phospholipids and self-assembled into vesicles in an aqueous medium. Both hydrophilic and lipophilic drugs have been formulated into pharmacosomes that caused improved solubility and permeability of drugs. Pharmacosomes are prepared by using various techniques such as hand shaking method, ether injection, solvent evaporation method, supercritical fluid approach, etc and are characterized for prodrug confirmation, surface morphology, crystal state measurement, in vitro drug release, and stability, etc. Despite wide research and highly encouraging results in the preclinical studies, translation of these nanomedicines from laboratory to market has been very limited. The main aim of this review is to describe comprehensively the potential of pharmacosomes as a vesicular drug delivery system focusing mainly on their conventional and advanced methods of preparation, different characterization techniques, and their applications in the delivery of different types of drugs with improved biopharmaceutical properties and pharmacokinetic performance.


Nanomedicine ◽  
2020 ◽  
Vol 15 (5) ◽  
pp. 489-509
Author(s):  
Dong Shen ◽  
Yan Shen ◽  
Qian Chen ◽  
Bin Huang ◽  
Yedong Mi ◽  
...  

Aim: Micelles are one of the most promising nanoplatforms for drug delivery, and here, cholesterol-conjugated polyoxyethylene sorbitol oleate (CPSO) micelles have been fabricated for the pulmonary delivery of paclitaxel (PTX). Materials & methods: PTX-CPSO micelles were prepared by a dialysis-ultrasonic method, and a single-factor experiment with a Box–Behnken design was conducted to optimize the formulation. Furthermore, intracellular and phagocytosis escape studies of the optimized formulation were performed on A549 and NR8383 cells. Results: The optimal micelles exhibited satisfactory encapsulation efficiency (78.48 ± 2.36%) and drug loading (17.06 ± 1.71%). In vitro studies showed enhanced CPSO micelle A549 cellular uptake and their ability to escape macrophages. Conclusion: PTX-CPSO micelles could be a promising system for pulmonary targeting by intravenous administration.


Author(s):  
RADHARANI PANDA ◽  
KETOUSETUO KUOTSU

Objective: The objective of the current study is to optimize and evaluate the potential of polyethylene glycolylated (PEG) glyceride Labrasol® nanostructured lipid carrier (NLC) composites of methotrexate (MTX) to achieve enhanced sustained release delivery in cancer treatment. Materials and Methods: MTX-NLC was successfully prepared by hot melt emulsification and probe sonication method for spatial and controlled release of this therapeutic agent. Results: The solubility screening of MTX and lipids resulted in the selection of Monostearin as solid lipid, PEGylated glyceride Labrasol® and olive oil as liquid lipids for the formulation of MTX-loaded NLC composites. Particle size, zeta potential, and polydispersity index of both the composites were confirmed using dynamic light scattering, whereby Labrasol® MTX-NLC showed high entrapment efficiency and drug loading. A spherical particle shape with smooth surface of all the composites was confirmed from the scanning electron microscope and transmission electron microscopy analysis. Labrasol® MTX-NLC showed remarkably increased cytotoxic response, augmented cellular uptake, and low half maximal inhibitory concentration value in MCF-7 cells. In vitro release study confirmed that encapsulation of MTX in PEGylated glyceride Labrasol® MTX-NLC resulted in enhanced sustained release of MTX for a period of 48 h. Conclusion: The present study establishes that PEGylated glyceride Labrasol® MTX-NLC can be considered as a promising anticancer delivery system, thereby improving antitumor efficacy of the drug.


2019 ◽  
Vol 20 (8) ◽  
pp. 2016 ◽  
Author(s):  
Minh Thanh Vu ◽  
Long Giang Bach ◽  
Duy Chinh Nguyen ◽  
Minh Nhat Ho ◽  
Ngoc Hoi Nguyen ◽  
...  

Polyamidoamine (PAMAM) dendrimers are extensively researched as potential drug delivery system thanks to their desirable features such as controlled and stable structures, and ease of functionalization onto their surface active groups. However, there have been concerns about the toxicity of full generation dendrimers and risks of premature clearance from circulation, along with other physical drawbacks presented in previous formulations, including large particle sizes and low drug loading efficiency. In our study, carboxyl-terminated PAMAM dendrimer G3.5 was grafted with poly (ethylene glycol) methyl ether (mPEG) to be employed as a nano-based drug delivery system with great cytocompatibility for the delivery of carboplatin (CPT), a widely prescribed anticancer drug with strong side effects so that the drug will be effectively entrapped and not exhibit uncontrolled outflow from the open structure of unmodified PAMAM G3.5. The particles formed were spherical in shape and had the optimal size range (around 36 nm) that accommodates high drug entrapment efficiency. Surface charge was also determined to be almost neutral and the system was cytocompatible. In vitro release patterns over 24 h showed a prolonged CPT release compared to free drug, which correlated to the cytotoxicity assay on malignant cell lines showing the lack of anticancer effect of CPT/mPEG-G3.5 compared with CPT.


Author(s):  
SARITHA M. ◽  
SATYA PRAKASH PANDA ◽  
SRAVANI BUDDHA ◽  
P. V. KAMALA KUMARI ◽  
Y. SRINIVASA RAO

In the development of new dosage forms, drug delivery using nanotechnology is playing a vital role. Vesicular drug delivery systems have gained wide attention in the field of nanotechnology, such as niosomes, liposomes and proniosomes. Among the vesicular carriers, proniosomes are superior. Proniosomes are water-soluble carrier particles that are coated with surfactant so these are dry formulations. They are rehydrated to use on agitation in hot aqueous media within minutes to form niosomal dispersion immediately. Both hydrophilic and lipophilic drugscan be incorporated into these proteasomes. The physical stability problems of niosomes like aggregation, fusion and leaking are minimized in proniosomes, routes, such as oral, parenteral, dermal and transdermal, ocular, oral mucosal, vaginal, pulmonary, and intranasal. Proniosomes prolong the existence of the drug in the systemic circulation and finally reduces toxicity. This review focuses on different aspects of proniosomes such as preparation, characterization, in vitro drug release, entrapment efficiency, applications in the present scenario in the market and future trends.


Author(s):  
Tang Qin ◽  
Zhu Dai ◽  
Xiaodi Xu ◽  
Zilin Zhang ◽  
Xiangyu You ◽  
...  

Background: The present limitations related to the ocular administration of antifungal drugs for the treatment of fungal keratitis include poor ocular bioavailability, limited retention time, and low ocular tissues penetration. Methods: This study aimed to prepare a novel ophthalmic voriconazole-loaded nanosuspension based on Eudragit RS 100. Pharmasolve® was explored as a corneal permeation enhancer in voriconazole ophthalmic formulation using in vitro and in vivo experiments. Briefly, 1% voriconazole-loaded nanosuspension was prepared using the quasi-emulsion solvent evaporation process. Results: Characterizations of the voriconazole-loaded nanosuspension by Zetasizer Nano ZS and transmission electron microscope (TEM) showed a uniform spherical shape without any agglomeration. The well-discreted nanoparticle with size of 138 ± 1.3 nm was achieved with high entrapment efficiency (98.6 ± 2.5 %) and a positive zeta potential in the range of 22.5 - 31.2 mV, indicating excellent physical stability. Discussion: Voriconazole-loaded nanosuspension containing the penetration enhancer displayed good permeability both in vitro and in vivocompared with the commercial voriconazole injection. The voriconazole-loaded nanosuspension exhibited good antifungal activity, significantly inhibiting the growth of Candida albicans at a lower concentrations of voriconazole (2.5 μg/mL, p < 0.05). Conclusion: In conclusion, the voriconazole-loaded nanosuspension containing Pharmasolve® can be used as an effective ophthalmic formu-lation for the topical ocular delivery of voriconazole.


Author(s):  
JAMPALA RAJKUMAR ◽  
G.V. RADHA ◽  
S. GANAPATY

Objective: This work aimed to establish and formulate the gossypinproniosomal gel drug delivery system. Methods: Gossypin-loaded proniosomal gels (GPG) was prepared using specific non-ionic surfactants (Spans), followed by particle size (PS), entrapment efficiency (percent EE), in vitro, ex-vivo drug release, and in vitro efficacy of Gossypin against human melanoma cells (A-375). Results: The results showed that the percentage EE for the GPG is appropriate (81.3 %–95.5 %) and they are Nano-sized (189.3–912.0 nm) and the gels diffusion provided the desired sustaining effect for GPG-F7 formulation (75.5 percent). The GPG reported cell viability of 14.9±2.3 percent compared with 16.1±1.1 percent for free Gossypin at the maximum dose of 100 μg/ml for A-375 human melanoma cells after 24 hr incubation time. No major changes were seen in the percentage EE, PS of GPG after storage for 90d, in the physical stability report. Conclusion: The results obtained suggest that the proniosomal drug delivery system can enhance the flux to the skin and achieve the ideal Gossypin sustainability effect. Consequently, the use of proniosomal gel may be advantageous with regard to the topical delivery of Gossypin for melanoma treatment management.


2020 ◽  
Vol 11 (1) ◽  
pp. 1130-1135 ◽  
Author(s):  
Asha Spandana K M ◽  
Jawahar Natarajan ◽  
Shailesh Thirumaleshwar ◽  
Hemanth Kumar S

Lipid Nanoparticles have gained increased attention during the last few decades. These carrier systems offer many advantages over conventional drug delivery system, including protection of the entrapped active ingredient from environmental (pH) or physiological (immune system, enzymes) degradations, improved bioavailability, prolonged circulation time, sustained release of drug and site specific drug delivery, reduced dose and side effects.  Solid Lipid Nanoparticles (SLN), has been reported as an alternative carrier system to liposomes.  However, SLN show some disadvantages such as drug expulsion during storage, low drug loading and aggregation of the particles. Nanostructured lipid carriers are evolved as second generation lipid nanoparticles to overcome the limitations of SLN, by modifying SLN by incorporating liquid lipid to the solid matrix for better drug accommodation to increase drug loading and prevent drug leakage while preserving the physical stability of the formulation. This article describes the features, various preparation techniques, characterization techniques and the therapeutic applications of NLCs in topical drug delivery, brain, oral and pulmonary delivery.


Sign in / Sign up

Export Citation Format

Share Document