Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs1

2013 ◽  
Vol 91 (11) ◽  
pp. 5183-5193 ◽  
Author(s):  
S. C. Pearce ◽  
V. Mani ◽  
T. E. Weber ◽  
R. P. Rhoads ◽  
J. F. Patience ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1135
Author(s):  
Arth David Sol Valmoria Ortega ◽  
Csaba Szabó

Heat stress (HS) significantly affects the performance of pigs by its induced stressors such as inflammation, hypoxia and oxidative stress (OS), which mightily strain the intestinal integrity and function of pigs. As heat stress progresses, several mechanisms in the intestinal epithelium involved in the absorption of nutrients and its protective functions are altered. Changes in these mechanisms are mainly driven by cellular oxidative stress, which promotes disruption of intestinal homeostasis, leading to intestinal permeability, emphasizing intestinal histology and morphology with little possibility of recovering even after exposure to HS. Identification and understanding of these altered mechanisms are crucial for providing appropriate intervention strategies. Therefore, it is this papers’ objective to review the important components for intestinal integrity that are negatively affected by HS and its induced stressors. With due consideration to the amelioration of such effects through nutritional intervention, this work will also look into the capability of dietary antioxidants in mitigating such adverse effects and maintaining the intestine’s integrity and function upon the pigs’ exposure to high environmental temperature.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 99-99
Author(s):  
Jessica M Johnson ◽  
Emma T Helm ◽  
Nicholas K Gabler ◽  
Eric R Burrough ◽  
Carson M De Mille

Abstract The physiological mechanisms by which in-feed antibiotics improve pig growth performance are largely unknown. One proposed mode of action is improvements in intestinal integrity and function. Therefore, the objective of this study was to test the hypothesis that in-feed therapeutic and sub-therapeutic antibiotics would improve intestinal integrity and function in nursery pigs. Twenty-four weaned pigs (6.1±1.1 kg BW) were randomly allotted to individual pens and assigned one of three dietary treatments as follows (n = 8 pigs/trt): 1) control, no antibiotics (CON), 2) CON + sub-therapeutic chlortetracycline [40 ppm in feed (sCTC)], and 3) CON + chlortetracycline-tiamulin [400 ppm + 35 ppm, respectively (CTCDen)]. The study consisted of two consecutive 14 d phases. Chlortetracycline-tiamulin was only fed in phase 1, sCTC was fed in both phases. Phase 1 and 2 ADG, ADFI, and G:F were determined. After 28 d, ileal and colonic ex vivo intestinal integrity was assessed via transepithelial resistance (TER) and macromolecule flux (FD4) in modified Ussing chambers. All data were analyzed for the fixed effects of treatment and start BW as a covariate. In phase 1, compared with CON and sCTC, CTCDen tended to have greater ADG (0.28, 0.31, and 0.33 kg/d, respectively, P = 0.10) and ADFI (0.28, 0.30, and 0.35 kg/d, respectively, P = 0.09). No differences in phase 1 G:F were observed (P = 0.11). Phase 2 ADG, ADFI, and G:F did not differ (P > 0.10). Further, ileal TER and FD4 did not differ (P > 0.10). Colonic TER tended to be increased in sCTC compared with CON and CTCDen (78, 56, and 59 Ω/cm2, respectively, P = 0.07). Compared with CON, colonic FD4 flux was decreased in sCTC and CTCDen by 35–40% (P = 0.03). Altogether, these data indicate that in-feed antibiotics improve colon integrity early in production which may contribute to improved growth performance.


2021 ◽  
pp. 2100728
Author(s):  
Ning Jiao ◽  
Lu Wang ◽  
Yubo Wang ◽  
Doudou Xu ◽  
Xin Zhang ◽  
...  

2015 ◽  
Vol 55 (12) ◽  
pp. 1403 ◽  
Author(s):  
N. K. Gabler ◽  
S. C. Pearce

Heat stress is a physiological condition when animals can no longer regulate their internal euthermic temperature. When livestock such as pigs are subjected to this environmental stress, it can be detrimental to performance, health and well-being, and if severe enough even death. Growing pigs are particularly susceptible to heat stress and one of the major organs first affected by heat stress is the gastrointestinal tract. As a result, reductions in appetite, intestinal function and integrity and increased risk of endotoxemia can modify post-absorptive metabolism and tissue accretion. These changes in intestinal integrity may be a result of altered expression of tight junction proteins, increased circulating endotoxin concentrations and markers of cellular stress (heat shock and hypoxia response), which is evident as early on as 2 h after heat-stress onset. Due to restricted blood flow, the ileum is more severely affected compared with the colon. Interestingly, many of the negative effects of heat stress on intestinal integrity appear to be similar to those observed with pigs reared under reduced nutrient and caloric intakes. Altogether, these depress pig performance and health, and extend days to market. Despite this impact on the gastrointestinal tract, under heat-stress conditions, intestinal glucose transport pathways are upregulated. This review discussed how heat stress (directly and indirectly via reduced feed intake) affects intestinal integrity and how heat stress contributes to decreased growth performance in growing pigs.


2014 ◽  
Vol 92 (12) ◽  
pp. 5444-5454 ◽  
Author(s):  
S. C. Pearce ◽  
M. V. Sanz-Fernandez ◽  
J. H. Hollis ◽  
L. H. Baumgard ◽  
N. K. Gabler

2021 ◽  
Vol 8 ◽  
Author(s):  
Jamal Hussen

The dromedary camel (Camelus dromedarius) is well-adapted to the desert environment with the ability to tolerate increased internal body temperatures rising daily to 41–42°C during extreme hot. This study was undertaken to assess whether in vitro incubation of camel blood at 41°C, simulating conditions of heat stress, differently alters cell vitality, phenotype, and function of leukocytes, compared to incubation at 37°C (normothermia). Using flow cytometry, the cell vitality (necrosis and apoptosis), the expression of several cell markers and adhesion molecules, and the antimicrobial functions of camel leukocytes were analyzed in vitro. The fraction of apoptotic cells within the granulocytes, lymphocytes, and monocytes increased significantly after incubation of camel whole blood at 41°C for 4 h. The higher increase in apoptotic granulocytes and monocytes compared to lymphocytes suggests higher resistance of camel lymphocytes to heat stress. Functionally, incubation of camel blood at 41°C for 4 h enhanced the phagocytosis and ROS production activities of camel neutrophils and monocytes toward S. aureus. Monocytes from camel blood incubated at 41°C for 4 h significantly decreased their expression level of MHC class II molecules with no change in the abundance of CD163, resulting in a CD163high MHC-IIlow M2-like macrophage phenotype. In addition, heat stress treatment showed an inhibitory effect on the LPS-induced changes in camel monocytes phenotype. Furthermore, in vitro incubation of camel blood at 41°C reduced the expression of the cell adhesion molecules CD18 and CD11a on neutrophils and monocytes. Collectively, the present study identified some heat-stress-induced phenotypic and functional alterations in camel blood leukocytes, providing a paradigm for comparative immunology in the large animals. The clinical relevance of the observed changes in camel leukocytes for the adaptation of the camel immune response to heat stress conditions needs further in vitro and in vivo studies.


Author(s):  
A Morales ◽  
F González ◽  
H Bernal ◽  
R L Camacho ◽  
N Arce ◽  
...  

Abstract The exposure of pigs to heat stress (HS) appears to damage their intestinal epithelia, affecting the absorption of amino acids (AA). Arg is involved in the restoration of intestinal epithelial cells but HS reduces Arg intake. The effect of dietary supplementation with Arg on morphology of intestinal epithelia, AA transporter gene expression, and serum concentration (SC) of free AA in HS pigs were analyzed. Twenty pigs (25.3 ± 2.4 kg BW) were randomly assigned to two dietary treatments: control (0.81% Arg), wheat-soybean meal diet supplemented with L-Lys, L-Thr, DL-Met and L-Trp, and the experimental diet where 0.16% free L-Arg was supplemented to a similar control diet (+Arg). All pigs were individually housed and exposed to HS, fed at libitum with full access to water. The ambient temperature, recorded at 15-min intervals during the 21-d trial, ranged on average from 29.6 to 39.4 °C within the same day. Blood samples were collected on d18 at 1600 h (ambient temperature peak); serum was separated by centrifugation. At the end of the trial, five pigs per treatment were sacrificed to collect samples of mucosa scratched from each small intestine segment. The expression of AA transporters in intestinal mucosa and the SC of AA were analyzed. Villi height was higher (P < 0.01) in duodenum, jejunum, and ileum but the crypt depth did not differ between the control and the +Arg pigs. Supplementation of L-Arg increased the mRNA coding for the synthesis of the cationic AA transporter b 0,+ (P < 0.01) and the neutral AA transporter B 0 (P < 0.05) in duodenum by approximately five-folds and three-folds, respectively, but no effect on mRNA abundance was observed in jejunum and ileum. The supplementation of L-Arg increased serum Arg, His, Met, Thr, Trp, and urea (P < 0.05); tended to increase Val (P < 0.10), but did not affect Ile, Lys, Leu, and Phe. These results indicate that supplementing 0.16% L-Arg to the control diet may help to improve the function of the small intestine epithelium, by increasing the villi height, the abundance of AA transporters, and the SC of most indispensable AA in pigs exposed to HS conditions. However, the lack of effect of supplemental Arg on both Lys SC and weight gain of pigs suggests that increasing the Lys content in the +Arg diet might be needed to improve the performance of HS pigs.


Sign in / Sign up

Export Citation Format

Share Document