Technical note: A special apparatus for facilitating the in situ nylon bag measurement of the ruminal degradation of feedstuffs in cattle1

2016 ◽  
Vol 94 (8) ◽  
pp. 3457-3463
Author(s):  
F. Wang ◽  
D. Y. Li ◽  
Q. X. Meng
2016 ◽  
Vol 56 (9) ◽  
pp. 1504 ◽  
Author(s):  
J. P. Keim ◽  
H. Charles ◽  
D. Alomar

An important constraint of in situ degradability studies is the need to analyse a high number of samples and often with insufficient amount of residue, especially after the longer incubations of high-quality forages, that impede the study of more than one nutritional component. Near-infrared spectroscopy (NIRS) has been established as a reliable method for predicting composition of many entities, including forages and other animal feedstuffs. The objective of this work was to evaluate the potential of NIRS for predicting the crude protein (CP) and neutral detergent fibre (NDF) concentration in rumen incubation residues of permanent and sown temperate pastures in a vegetative stage. In situ residues (n = 236) from four swards were scanned for their visible-NIR spectra and analysed for CP and NDF. Selected equations developed by partial least-squares multivariate regression presented high coefficients of determination (CP = 0.99, NDF = 0.95) and low standard errors (CP = 4.17 g/kg, NDF = 7.91 g/kg) in cross-validation. These errors compare favourably to the average concentrations of CP and NDF (146.5 and 711.2 g/kg, respectively) and represent a low fraction of their standard deviation (CP = 38.2 g/kg, NDF = 34.4 g/kg). An external validation was not as successful, with R2 of 0.83 and 0.82 and a standard error of prediction of 14.8 and 15.2 g/kg, for CP and NDF, respectively. It is concluded that NIRS has the potential to predict CP and NDF of in situ incubation residues of leafy pastures typical of humid temperate zones, but more robust calibrations should be developed.


1992 ◽  
Vol 72 (1) ◽  
pp. 71-81 ◽  
Author(s):  
B. M. Mosimanyana ◽  
D. N. Mowat

The effects of processing variables on soybean crude protein (CP) ruminal degradation were investigated. Soybean meal (SBM) was heated in a forced-air oven (90 °C, 1 h) with blood (0, 5, 10 and 20% dry matter) and/or xylose (3 mol mol−1 SBM-blood lysine) in a randomized complete block design. In another experiment, whole soybeans were utilized using the following treatments: raw; roasted (in Gem Co. unit exit temperature 150 °C) and steeped for 0 or 2 h; roasted, flaked (exit temperature 111 °C) and steeped for 0, 1, 2, 3 h or 1 h with 4% xylose and/or 10% blood. Solubility of SBM CP was reduced (P < 0.01) by the addition of xylose, without adverse effects on pepsin-digestible CP and acid detergent insoluble nitrogen. In situ degradation of CP (EDCP), assuming a passage rate of 5% h−1, of SBM was reduced by the addition of blood (P < 0.05) and particularly xylose (P < 0.01). Soybean CP solubility was reduced (P < 0.01) by roasting and flaking (65.6 vs. 17.6% total CP). Not flaking the roasted beans further reduced (P < 0.01) CP solubility (to 10.4%) probably due to less rapid cooling. The EDCP of raw soybeans (87.6%) was reduced by roasting (64.2%), steeping whole (57.6%) or flaked (61.1%) beans. These data support xylose to effectively reduce ruminal degradation of SBM and simple steeping (1 h) with or without flaking to further reduce EDCP of roasted soybeans. Key words: Soybean meal, soybeans, xylose, blood, steeping, protein degradation


1992 ◽  
Vol 72 (4) ◽  
pp. 881-889 ◽  
Author(s):  
Z. Mir ◽  
P. S. Mir ◽  
S. Bittman ◽  
L. J. Fisher

The degradation characteristics of dry matter (DM), protein, neutral detergent fiber (NDF) and acid detergent fiber (ADF) of corn–sunflower intercrop silage (CSS) and monoculture corn silage (CS) prepared from whole plants, harvested at two stages of maturity, were compared using eight mature rumen-cannulated steers. The degradation characteristics were determined by incubating the silages in nylon bags for up to 72 h in the rumen of animals fed the respective silages. The degradation characteristics determined for the silages were the soluble fraction, the insoluble but degradable fractions, the rate of degradation of the degradable fractions of silage DM and protein, and the in situ disappearance of NDF and ADF after 0.5 and 72 h of incubation. The rate of particulate passage from the rumen was determined using chromium-mordanted NDF of the four silages. Values were used to estimate effectively degraded DM and protein. The rates of DM and protein degradation were highest for late-cut CSS (6.3 and 6.0% h−1, respectively) and the least for late-cut CS (2.5 and 0.8% h−1, respectively). Averaged across stages of maturity, more (P < 0.05) DM and protein were effectively degraded with CSS (57.4 and 70.1%, respectively) than with CS (48.8 and 48.7%). Degradation of NDF in early-cut CSS was lower (P < 0.05) than in CS after 72 h of incubation. ADF disappearance from all of the silages after 72 h of incubation was similar. Ruminal degradation of DM and protein in CSS was greater than in CS, which may affect efficiency of utilization of CSS. Key words: Degradation rate, effective degradability, corn silage, intercropped corn–sunflower, steers


2005 ◽  
Vol 5 (1) ◽  
pp. 97-106 ◽  
Author(s):  
T. Eidhammer ◽  
T. Deshler

Abstract. In December 2001 and 2002 in situ aerosol measurements were made from balloon-borne platforms within polar stratospheric clouds (PSC) which contained particles of supercooled ternary solution (STS), nitric acid trihydrate (NAT) and ice. Particle size and number concentrations were measured with two optical particle counters. One of these included an ~80cm inlet heated to K to evaporate the PSC particles and thus to obtain measurements, within PSCs, of the size distribution of the particles upon which the PSCs condensed. These measurements are compared to models, described here, that calculate the evaporation of PSC particles at and for an inlet transition time of about 0.1s. The modeled evaporation for STS agrees well with the measurements. For NAT the modeled evaporation is less than the evaporation measured. The primary uncertainty concerns the phase and morphology of NAT particles as they are brought to temperatures >50K above equilibrium temperatures for NAT at stratospheric partial pressures. The slow evaporation of NAT in heated inlets could be used to identify a small NAT component within a mixed phase PSC dominated by STS.


2006 ◽  
Vol 20 (3) ◽  
pp. 1-7 ◽  
Author(s):  
Will Forest Beringer ◽  
Jean-Pierre Mobasser ◽  
Dean Karahalios ◽  
Eric Alfred Potts

✓Adult high-grade degenerative spondylolisthesis represents the extreme end of the spectrum for spondylolisthesis and is consequently rarely encountered. Surgical management of high-grade spondylolisthesis requires constructs capable of resisting the shear forces at the slipped L5–S1 interspace. The severity of the slip, sacral inclination, and slip angle may make conventional approaches to 360° fusion difficult or hazardous. Transdiscal pedicle screw fixation, transvertebral fibular graft fusion, and transvertebral cage fixation are techniques that have been developed to establish anterior column load sharing and to resist shear forces at the L5–S1 interspace, given the anatomical constraints accompanying high-grade spondylolisthesis. In this technical note the authors describe the procedure for implanting an in situ anterior L5–S1 transvertebral cage and performing L4–5 anterior lumbar interbody fusion, followed by placement of posterior S1–L5 vertebral body transdiscal pedicle screws for management of high-grade spondylolisthesis.


2018 ◽  
Vol 93 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Lidia Ascencio-Rojas ◽  
Braulio Valles-de la Mora ◽  
Epigmenio Castillo-Gallegos ◽  
Muhammad Ibrahim

2018 ◽  
Vol 89 (7) ◽  
pp. 972-978 ◽  
Author(s):  
Makoto Miyaji ◽  
Hidehiko Inoue ◽  
Tetsuo Kawaide ◽  
Masanori Tohno ◽  
Yuko Kamiya ◽  
...  

2007 ◽  
Vol 2007 ◽  
pp. 211-211
Author(s):  
Ali Mahdavi ◽  
Ali Nikkhah ◽  
Fatemeh Alemi

The in situ technique forms the basis of many feed evaluation systems for ruminants. Although this method is widely used, the NBT is very laborious, time-consuming, and incubations and analyses of the feed residues often last several weeks. Therefore, several other techniques have been investigated to measure and predict ruminal degradation of various chemical components of feedstuffs. The aim of this study is to investigate the possibilities of estimating in situ degradation characteristics of DM, CP, ADF and NDF in several feedstuffs by gas production characteristics and chemical composition.


2007 ◽  
Vol 2007 ◽  
pp. 166-166 ◽  
Author(s):  
Hamid Mohammadzadeh ◽  
Ali Nikkhah ◽  
Kamran Reza-Yazdi ◽  
Hassan Mehrabani-Yeganeh

Dairy producers use soyhulls, a byproduct of soybean processing, to replace either grain or forage in diets of lactating dairy cows. In view of the nutritional and economical value of soyhulls it is anticipated that this practice will continue to increase in popularity among nutritionists and producers of ruminant animals. According to the NRC (2001), SH contain 60.3% NDF and 44.6% ADF on a DM basis. Also The CP content of SH averaged 11.8%, which is within the range of 13.9± 4.6%. The objectives of this paper are to evaluate the in vitro DM and OM digestibility and in situ degradability of DM, CP and NDF contents of soybean hulls.


1995 ◽  
Vol 73 (2) ◽  
pp. 578-582 ◽  
Author(s):  
Vincent H. Varel ◽  
Kelly K. Kreikemeier
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document