Effect of Dietary Lactic Acid on Rumen Lactate Metabolism and Blood Acid-Base Status of Lambs Switched from Low to High Concentrate Diets

1979 ◽  
Vol 49 (6) ◽  
pp. 1569-1576 ◽  
Author(s):  
G. B. Huntington ◽  
R. A. Britton
1981 ◽  
Vol 92 (1) ◽  
pp. 109-124
Author(s):  
E. W. TAYLOR ◽  
MICHÈLE G. WHEATLY

1. When first removed into air, crayfish showed transient increases in heart rate (fH) and scaphognathite rate (fR) which rapidly recovered to submerged levels and were unchanged for 24 h. The rate of O2 consumption(Moo2) increased from an initially low level and was then maintained for 24 h in air at the same level as in settled submerged animals. 2. There was an initial acidosis in the haemolymph which was both respiratory and metabolic due to the accumulation of CO2 and lactate. Progressive compensation by elevation of the levels of bicarbonate buffer in the haemolymph and reduction of circulating lactate levels returned pH towards submerged levels after 24 h in air. 3. Exposure to air resulted in a marked internal hypoxia with haemolymph O2, tensions, both postbranchial Pa, oo2 and prebranchial Pv, oo2, remaining low throughout the period of exposure. The oxygen content or the haemolymph was initially reduced, with a - vOO2 content difference close to zero. Within 24 h both Ca, oo2 and Cv, OO2 had returned towards their levels in submerged animals. These changes are explained by the Bohr shift on the haemocyanin consequent upon the measured pH changes. 4. After 48 h in air, MO2 and fH were significantly reduced and ventilation became intermittent. There was a slight secondary acidosis, increase in lactic acid levels and reduction in a - vO2 content difference in the haemolymph. 5. When crayfish were returned to water after 24 h in air, MOO2, fHfR were initially elevated by disturbance and there was a period of hyperventilation. In the haemolymph there was an initial slight alkalosis, and an increase in Ca, OO2 lactic acid. All variables returned to their settled submerged levels within 8 h.


1985 ◽  
Vol 40 (1) ◽  
pp. 11-16 ◽  
Author(s):  
R. C. Upadhyay ◽  
M. L. Madan

ABSTRACTHaryana and crossbred (Holstein × local Haryana) bullocks were subjected to work under heavy loads in summer. During the work, bullocks exhibited distress symptoms. After work, rectal temperature, respiration rate, heart rate and minute volume increased significantly, the average pO2 content increased, muscle lactic acid increased and creatine phosphate level declined. From the results it was evident that oxygen availability in blood improved during work. Despite the enhanced oxygenation of blood, there was accumulation of lactic acid in muscle. This indicated a certain degree of tissue hypoxia, which probably brought about fatigue earlier.


1984 ◽  
Vol 62 (8) ◽  
pp. 939-942 ◽  
Author(s):  
James R. Oster ◽  
Helen C. Alpert ◽  
Carlos A. Vaamonde

The mechanism(s) underlying the hyperphosphatemia of lactic acidosis is uncertain. We assessed the interacting influence of the acid anion and acid–base status on plasma phosphorus concentration by administering lactic acid alone, lactic acid plus sodium bicarbonate, sodium bicarbonate alone, and sodium lactate alone to four different groups of dogs. The findings of (1) no increase in plasma phosphorus concentration with lactic acid plus sodium bicarbonate versus a marked increment with lactic acid alone, and (2) no difference in the plama phosphorus response to sodium lactate versus sodium bicarbonate indicate that acidemia is necessary for the expression of lactate-induced hyperphosphatemia. The apparent greater propensity for marked hyperphosphatemia in lactic acidosis than in other types of metabolic acidosis remains unexplained, but conceivably might relate to differences in intracellular pH and in the rate of glycolysis.


2000 ◽  
Vol 278 (6) ◽  
pp. R1564-R1571 ◽  
Author(s):  
Donald C. Jackson ◽  
Carlos E. Crocker ◽  
Gordon R. Ultsch

To evaluate shell and bone buffering of lactic acid during acidosis at 3°C, turtles were submerged in anoxic or aerated water and tested at intervals for blood acid-base status and plasma ions and for bone and shell percent water, percent ash, and concentrations of lactate, Ca2+, Mg2+, Pi, Na+, and K+. After 125 days, plasma lactate concentration rose from 1.6 ± 0.2 mM (mean ± SE) to 155.2 ± 10.8 mM in the anoxic group but only to 25.2 ± 6.4 mM in the aerated group. The acid-base state of the normoxic animals was stable after 25 days of submergence. Plasma calcium concentration ([Ca2+]) rose during anoxia from 3.2 ± 0.2 to 46.0 ± 0.6 mM and [Mg2+] from 2.7 ± 0.2 to 12.2 ± 0.6 mM. Both shell and bone accumulated lactate to concentrations of 135.6 ± 35.2 and 163.6 ± 5.1 mmol/kg wet wt, respectively, after 125 days anoxia. Shell and bone [Na+] both fell during anoxia but the fate of this Na+ is uncertain because plasma [Na+] also fell. No other shell ions changed significantly in concentration, although the concentrations of both bone calcium and bone potassium changed significantly. Control shell water (27.8 ± 0.6%) was less than bone water (33.6 ± 1.1%), but neither changed during submergence. Shell ash (44.7 ± 0.8%) remained unchanged, but bone ash (41.0 ± 1.0%) fell significantly. We conclude that bone, as well as shell, accumulate lactate when plasma lactate is elevated, and that both export sodium carbonate, as well as calcium and magnesium carbonates, to supplement ECF buffering.


1983 ◽  
Vol 103 (1) ◽  
pp. 31-46 ◽  
Author(s):  
G. F. Holeton ◽  
N. Heisler

Specimens of the larger spotted dogfish (Scyliorhinus stellaris) were electrically stimulated to exhaustion in a closed seawater recirculation system. The production of large quantities of lactic acid by anaerobic metabolism and the resultant efflux of the dissociation products, H+ and lactate, from the white musculature resulted in severe acid-base disturbances and in increases in plasma lactate concentration, the two effects having extremely different time courses. Plasma pH and bicarbonate were maximally depressed 15–30 min after exercise, whereas peak lactate concentrations of up to 30 mM were not attained before 4–8 h after exercise. The acid-base status were restored to normal 10–14 h after exercise, long before the aerobic processing of surplus lactic acid was complete 22–30 h after exercise. This behaviour can be explained on the basis of an interaction of transfer rates, buffer values and equilibria between intracellular and extracellular compartments with the transient net transfer of surplus H+ ions to the environmental water. About half of the original quantity of H+ was transferred net to the environment via the branchial epithelium during the first 8–10 h, and it was later taken up again at the rate of aerobic lactic acid processing in the metabolism of the fish, whereas a transfer of lactate was not observed at any time during the experiment. As a result, the distribution patterns of H+ and lactate differed from each other and varied with time elapsed after anaerobic exercise, leading to the apparent ‘H+ ion deficit’ which has been observed in the blood of several fish species during lactacidosis. Net transfer of H+ ions to the environment facilitates rapid normalization of the acid-base status long before the original stress, lactic acid, is removed from the organism and thus represents an effective regulatory mechanism for the defence of the internal milieu in fish.


2014 ◽  
Vol 1 (2) ◽  
pp. 143-147
Author(s):  
Md. Ansar Ali ◽  
Kaniz Hasina ◽  
Shahnoor Islam ◽  
Md. Ashraf Ul Huq ◽  
Md. Mahbub-Ul Alam ◽  
...  

Background: Different treatment modalities and procedures have been tried for the management of infantile hypertrophic pyloric stenosis. But surgery remains the mainstay for management of IHPS. Ramstedt’s pyloromyotomy was described almost over a hundred years ago and to date remains the surgical technique of choice. An alternative and better technique is the double-Y pyloromyotomy, which offer better results for management of this common condition.Methods: A prospective comparative interventional study of 40 patients with IHPS was carried out over a period of 2 years from July 2008 to July 2010. The patients were divided into 2 equal groups of 20 patients in each. The study was designed that all patients selected for study were optimized preoperatively regarding to hydration, acid-base status and electrolytes imbalance. All surgeries were performed after obtaining informed consent. Standard preoperative preparation and postoperative feeding regimes were used. The patients were operated on an alternate basis, i.e., one patient by Double-Y Pyloromyotomy(DY) and the next by aRamstedt’s Pyloromyotomy (RP). Data on patient demographics, operative time, anesthesia complications, postoperative complications including vomiting and weight gain were collected. Patients were followed up for a period of 3 months postoperatively. Statistical assessments were done by using t test.Results: From July 2008 through July 2010, fourty patients were finally analyzed for this study. Any statistical differences were observed in patient population regarding age, sex, weight at presentation, symptoms and clinical condition including electrolytes imbalance and acid-base status were recorded. Significant differences were found in postoperative vomiting and weight gain. Data of post operative vomiting and weight gain in both groups were collected. Vomiting in double-Y(DY) pyloromyotomy group (1.21 ± 0.45days) vs Ramstedt’s pyloromyotomy (RP) group(3.03 ± 0.37days) p= 0.0001.Weight gain after 1st 10 days DY vs RP is ( 298 ± 57.94 gm vs193±19.8 gm p=0.0014), after 1 month (676.67±149.84 gm vs 466.67 ± 127.71 gm, p=0.0001), after 2months (741.33± 278.74 gm vs 490±80.62 gm, p=0.002) and after 3 months (582±36.01gm vs 453.33±51.64 gm, p=0.0001).No long-term complications were reported and no re-do yloromyotomy was needed.Conclusion: The double-Y pyloromyotomy seems to be a better technique for the surgical management of IHPS. It may offer a better functional outcome in term of postoperative vomiting and weight gain.DOI: http://dx.doi.org/10.3329/jpsb.v1i2.19532


Sign in / Sign up

Export Citation Format

Share Document