scholarly journals Mobile Modular Unit for Electrochemical Decontamination of Metal Surfaces

2020 ◽  
Vol 12 (3) ◽  
pp. 32-38
Author(s):  
A. Yu. Yurchenko ◽  
◽  
A. N. Nikolaev ◽  
A. S. Barinov ◽  
◽  
...  

The article describes operation principle and design of a mobile modular unit for electrochemical decontamination of metal surfaces. It presents the experimental data on its testing which involved various real-world radioactively contaminated objects with corrosion products and layers of mechanical contamination present on their surfaces. The unit can be used to decontaminate large-size metal equipment of radiochemical plants (hot cells, glove boxes) without fragmentation, in semi-automatic mode with a minimum exposure time of personnel in the work area.

Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xu-Qian Fan ◽  
Wenyong Gong

Abstract Path planning has been widely investigated by many researchers and engineers for its extensive applications in the real world. In this paper, a biharmonic radial basis potential function (BRBPF) representation is proposed to construct navigation fields in 2D maps with obstacles, and it therefore can guide and design a path joining given start and goal positions with obstacle avoidance. We construct BRBPF by solving a biharmonic equation associated with distance-related boundary conditions using radial basis functions (RBFs). In this way, invalid gradients calculated by finite difference methods in large size grids can be preventable. Furthermore, paths constructed by BRBPF are smoother than paths constructed by harmonic potential functions and other methods, and plenty of experimental results demonstrate that the proposed method is valid and effective.


Trudy NAMI ◽  
2021 ◽  
pp. 25-34
Author(s):  
B. B. Kositsyn ◽  
Kh. Chzhen ◽  
R. L. Gazizullin

Introduction (problem statement and relevance). A promising direction for reducing a vehicle moving energy is the application of adaptive laws for controlling the power supplied to the propeller based on neural networks. To create a training array of the latter, a large set of experimental data is required, the collection of which, as a rule, is carried out by using research stands, such as the “Soil Channel”. But the fi eld studies require a lot of resources.The purpose of the study was to create a wheel rolling mathematical model in the conditions of the stand, with the help of which it would be possible to organize the collection of needed statistical data on the wheel rolling modes by calculation them in an automatic mode.Methodology and research methods. The paper describes the “Soil Channel” bench test, held by the Department of “Multipurpose tracked vehicles and mobile robots” of Bauman Moscow State Technical University. A list of the control and measuring systems components used in the process of its modernization in order to automate the collection of experimental data was considered. The “Soil Channel” stand mathematical model was presented which was based on the use of experimentally obtained dependences of the specifi c longitudinal thrust force on sliding and the specifi c longitudinal thrust force on the specifi c circumferential force.Scientifi c novelty and results. The developed mathematical model has been verifi ed on the basis of the data obtained in the course of fi eld studies. Conclusions were made about the suitability of the developed mathematical model of wheel motion under the stand conditions for conducting virtual experiments.Practical signifi cance. The data obtained by applying the developed mathematical model can be used to create a training array of a neural network to provide the implementation of adaptive laws for controlling the power supplied to the propeller.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


1992 ◽  
Vol 285 ◽  
Author(s):  
W.W. Duley ◽  
G. Kinsman

ABSTRACTExcimer laser radiation may be used to process metal surfaces in a variety of novel ways. The simplest of these involves the use of UV laser pulses for ablation. Ablation occurs as the result of both vaporization and hydrodynamical effects. Experimental data related to these processes will be discussed. In addition, it will be shown how specific irradiation regimes can yield metal surfaces with unique radiative properties.


2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Yuanyuan Dong ◽  
Andrew V. Goldberg ◽  
Alexander Noe ◽  
Nikos Parotsidis ◽  
Mauricio G. C. Resende ◽  
...  

AbstractWe present a set of new instances of the maximum weight independent set problem. These instances are derived from a real-world vehicle routing problem and are challenging to solve in part because of their large size. We present instances with up to 881 thousand nodes and 383 million edges.


2011 ◽  
Vol 23 (2) ◽  
pp. 57-80 ◽  
Author(s):  
Brian Bishop ◽  
Kevin McDaid

The reliability of end-user developed spreadsheets is poor. Research studies find that 94% of ‘real-world’ spreadsheets contain errors. Although some research has been conducted in the area of spreadsheet testing, little is known about the behaviour or processes of individuals during the debugging task. In this paper, the authors investigate the performance and behaviour of expert and novice end-users in the debugging of an experimental spreadsheet. To achieve this aim, a spreadsheet debugging experiment was conducted, with professional and student participants requested to debug a spreadsheet seeded with errors. The work utilises a novel approach for acquiring experimental data through the unobtrusive recording of participants’ actions using a custom built VBA tool. Based on findings from the experiment, a debugging tool is developed, and its effects on debugging performance are investigated.


1992 ◽  
Vol 9 ◽  
pp. 713-714
Author(s):  
David Huenemoerder

The availability and advances in two-dimensional electronic detectors, in particular the charge-coupled-devices (CCDs), are a great asset to astronomical imaging and spectroscopy because of their sensitivity, dynamic range, and linearity. In some cases photographic plates still offer an advantage to imaging of large size, but the advent of large format CCDs may make a figure of merit, the area per exposure time, much more favorable for CCDs.


2019 ◽  
Vol 86 (8) ◽  
Author(s):  
Zhifeng Xu ◽  
Roberto Ballarini ◽  
Jia-Liang Le

Experimental data have made it abundantly clear that the strength of polycrystalline silicon (poly-Si) microelectromechanical systems (MEMS) structures exhibits significant variability, which arises from the random distribution of the size and shape of sidewall defects created by the manufacturing process. Test data also indicated that the strength statistics of MEMS structures depends strongly on the structure size. Understanding the size effect on the strength distribution is of paramount importance if experimental data obtained using specimens of one size are to be used with confidence to predict the strength statistics of MEMS devices of other sizes. In this paper, we present a renewal weakest-link statistical model for the failure strength of poly-Si MEMS structures. The model takes into account the detailed statistical information of randomly distributed sidewall defects, including their geometry and spacing, in addition to the local random material strength. The large-size asymptotic behavior of the model is derived based on the stability postulate. Through the comparison with the measured strength distributions of MEMS specimens of different sizes, we show that the model is capable of capturing the size dependence of strength distribution. Based on the properties of simulated random stress field and random number of sidewall defects, a simplified method is developed for efficient computation of strength distribution of MEMS structures.


2017 ◽  
Vol 29 (4) ◽  
pp. 660-667 ◽  
Author(s):  
Yoshihiro Takita ◽  

This paper discusses the generated trajectory of an extended lateral guided sensor steering mechanism (SSM) method for a steered autonomous vehicle moving in a real world environment. In a previous study, an extended SSM was applied to the Smart Dump 9 and AR Chair robots for following preset waypoints on a map. These studies showed only the schematic idea of the method; the precise performance of the generated trajectory was not shown. This paper compares the Smart Dump 9 robot with a newly developed AR Skipper robot; these robots participated in the Tsukuba Challenge in 2015 and 2016, respectively. Finally, experimental data from the Tsukuba Challenge 2016 demonstrates the advantages of the extended SSM and developed control system.


Sign in / Sign up

Export Citation Format

Share Document