Lentiviral vector-mediated gene complementation of patient monocytes as a tool to dissect the role of ADA2 in inflammation

Author(s):  
Camviel Nicolas
2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Lindong Zhang ◽  
Quanling Feng ◽  
Zhiting Wang ◽  
Pingping Liu ◽  
Shihong Cui

Abstract Uterine leiomyoma is the most common benign smooth muscle tumor of uterus in women of reproductive age, with a high lifetime incidence. Nowadays, the exploration on the pharmacotherapies, such as progesterone receptor antagonist (PRA) requires more attention. Hence, the current study aimed to examine whether mifepristone, a PRA, influences the autophagy and apoptosis of uterine leiomyoma cells. Primary uterine leiomyoma cells were collected from 36 patients diagnosed with uterine leiomyoma to establish PR-M-positive (PR-M[+]) cells. The lentiviral vector overexpressing or silencing PR-M was subsequently delivered into one part of PR-M(+) cells in order to evaluate the role of PR-M in PR-M(+) cells. The results obtained revealed that cell viability was increased, while cell autophagy and apoptosis were diminished in the PR-M(+) cells treated with overexpressed PR-M, whereby the Bcl-2 level was elevated and the level of Beclin1 was reduced. An opposite trends were identified following treatment with knockdown of PR-M. Mifepristone at different concentrations (low, moderate, or high) was then applied to treat another part of the PR-M(+) cells. Mifepristone was identified to promote cell autophagy and apoptosis, decrease Bcl-2 level and increase Beclin1 level, accompanied by weakened interaction between Bcl-2 and Beclin1. Moreover, these effects of mifepristone on PR-M(+) cells were enhanced with increasing of the concentration. Taken together, the present study present evidence indicates the ability of PRA to regulate the Bcl-2/Beclin1 axis, ultimately promoting the autophagy and apoptosis of uterine leiomyoma cells, highlighting that PRA serves as a promising therapeutic target for the treatment of uterine leiomyoma.


2016 ◽  
Vol 4 (3) ◽  
pp. 276-288
Author(s):  
Sascha Vierkotten ◽  
Victoria Korinek

High temperature requirement protein A1 (HtrA1) is a serine protease that is mostly secreted to degrade numerous extracellular matrix proteins, They are involved in the development and progression of several pathological processes such as cancer, neurodegenerative disorders and arthritic diseases, but it also exists within cells for some partially understood. The purpose of this study was to investigate the role of HTRA1 in the uveitis, and the possible mechanisms involved. Interphotoreceptor retinoid-binding protein peptide R14 to induced uveitis in rat model. A recombinant lentiviral vector carrying HTRA1-shRNA to knockdown HTRA1 expression. ELISA to detected proinflammatory cytokines and standard molecular biological techniques were used for subcloning of HtrA1. The knockdown of HTRA1 was associated with decreased the cellularlevel expression of proinflammatory cytokine resulted in reduced cellular damage, and increased mRNA levels of TGF-β1.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 830-830 ◽  
Author(s):  
Nadia Felli ◽  
Laura Fontana ◽  
Elvira Pelosi ◽  
Rosanna Botta ◽  
Desirée Bonci ◽  
...  

Abstract MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression primarily through translational repression. In unilineage erythropoietic (E) culture of cord blood (CB) CD34+ progenitor cells, the level of miR 221 and 222 is gradually and sharply downmodulated. Hypothetically, this decline could promote erythropoiesis by unblocking expression of key functional proteins. Our studies indicate that miR 221 and 222 target the Kit receptor: specifically, (a) the luciferase targeting assay showed that miR 221 and 222 directly interact with the 3′UTR of Kit mRNA; (b) in E culture the miR 221 and 222 level is inversely related to Kit protein expression, whereas the abundance of Kit mRNA is relatively stable. Functional studies show that treatment of CD34+ cells with miR 221 and 222, via oligonucleotide transfection or lentiviral vector infection, causes impaired proliferation and accelerated differentiation of E cells, coupled with downmodulation of Kit protein: this phenomenon, observed in E culture releasing endogenous Kit ligand (KL), is magnified in E culture supplemented with KL. Furthermore, transplantation experiments into NOD-SCID mice reveal that miR 221 or 222 treatment of CD34+ cells impairs their engraftment capacity and stem cell activity. Finally, miR 221 and 222 gene transfer impairs proliferation of the TF1 erythroleukemic cell line, expressing the Kit receptor. Altogether, our studies indicate that in human erythropoiesis the decline of miR 221 and 222 unblocks Kit protein production at translational level, thus leading to expansion of early E cells. Furthermore, overexpression of miR 221 and 222 inhibits proliferation of Kit+ erythroleukemic cells, suggesting a potential role of these microRNAs in cancer therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2463-2463
Author(s):  
Mohammad Minhajuddin ◽  
Shanshan Pei ◽  
John M Ashton ◽  
Kevin Callahan ◽  
Eleni Lagadinou ◽  
...  

Abstract Abstract 2463 Acute myeloid leukemia is malignant disease, characterized by an accumulation of immature myeloid cells. Recent studies have demonstrated that myeloid leukemia appears to arise from a population of leukemia stem cells (LSCs). LSCs typically reside in a quiescent state and therefore do not respond to standard chemotherapeutic agents, which generally target more actively dividing cells. However, LSCs do display certain unique molecular properties that can be exploited to target this relatively rare population of cells that drive disease pathogenesis. Specifically, NF-kB, a pro-survival transcription factor, is constitutively active in LSCs but not in normal hematopoietic stem cells (HSCs). Targeting this pathway by pharmaceutical approaches has been suggested as a potential strategy in the treatment of leukemia; however, inhibiting this pathway alone is not sufficient to strongly induce AML-specific cell death. Further investigation of pathways, that are unique to AML, is a key in designing more effective pharmacologic agents that specifically target the LSC. We have previously demonstrated that the naturally occurring compound parthenolide (PTL) induces apoptosis in primary AML cells, including the stem and progenitor cell. While the empirical anti-leukemic activity of PTL is clear, the underlying molecular mechanisms remain poorly understood. Here we investigate two properties associated with parthenolide-mediated cell death: i) activation of pro-apoptotic transcription factor p53, ii) inhibition of pro-survival transcription factor NF-kB. In order to evaluate the role of p53 signaling, AML cells were challenged with PTL resulting in the phosphorylation of p53 at serine-15, indicating activation p53 in response to PTL. To further investigate the role of p53 in PTL mediated responses, we generated a lentiviral vector expressing shRNAs specifically targeting p53. Leukemia cells were infected with the lentiviral vector encoding p53 shRNA or scramble control and evaluated by qPCR and western blot analysis. The data showed a significant knockdown of p53 mRNA and protein levels, as well as strong inhibition of p21 expression, indicating the specificity of p53 knockdown. Exposure of cells to PTL in which p53 has been specifically disrupted results in partial rescue from PTL mediated cell death, implicating the role of p53 in this response. Next, we performed a detailed analysis of the molecular mechanism by which PTL inhibits NF-kB pathway activity. Using a novel analog of PTL, we demonstrate that the compound directly binds to IKK-beta. Upon exposure to PTL, IKK-beta shows reduced kinase activity, indicating that binding of the drug directly impairs enzymatic function. Secondary to the inhibition of IKK-beta kinase activity, there is decreased phosphorylation of IkB-alpha at ser32/36, resulting in reduced proteosome mediated degradation. As expected, translocation of RelA/p65 to the nucleus was also impaired, resulting in decreased DNA binding activity as evidenced by electrophoretic mobility shift assay (EMSA). Interestingly, studies with a biotinylated analog also show that PTL appears to directly bind p65, we also observed a decreased phosphorylation of p65 at serine 536, an event mediating the transcriptional activity of DNA-bound p65. Inhibition of the NF-kB pathway by parthenolide also resulted in very significant inhibition of one of its well-known downstream target genes, ICAM-1 (CD54) at mRNA, protein and surface expression levels. Whether reduced ICAM-1 expression affects the biology of AML cells is as yet unknown. However, given the known role of ICAM-1 in integrin signaling, we propose that loss of ICAM-1 via NF-kB inhibition may impair the ability of AML cells to interact with their environment. Taken together, this study further elucidates the mechanisms by which PTL mediates pro-apoptotic activity in primary AML cells. PTL induces activation of p53 pathway and therefore knockdown of p53 by shRNA results in partial rescue from PTL mediated cell death. PTL also inhibits the NF-kB pathway, which includes binding of PTL to both IKK-beta and RelA/p65, which leads to decreased phosphorylation of IkB-alpha and reduced DNA binding of p65. In addition, we have discovered the ICAM-1 expression in AML cells is regulated by NF-kB, and that loss of NF-kB DNA binding activity results in loss of ICAM-1 expression. Disclosures: No relevant conflicts of interest to declare.


1980 ◽  
Vol 151 (3) ◽  
pp. 709-715 ◽  
Author(s):  
W P Lafuse ◽  
J F McCormick ◽  
C S David

Ia specificities 22 and 23 were found to be determinants on hybrid Ia molecules by serological and biochemical studies. Lipopolysaccharide-stimulated splenic lymphocytes from (B10 X B10.D2)F1 expressed Ia.22 although both the parents were negative. Similarly [D2.GD X B10.A(5R)]F1 cells expressed Ia.23, whereas D2.GD and B10.A(5R) lacked it. Ia.22 can be generated by gene complementation of Ak-Ek, Ab-Ed, Ab-Ek, As-Ed, and As-Ek, whereas Ia.23 can be generated by Ad-Ed, Ad-Ek, and Ad-Ep. Other possible complementing combinations are under study. The role of Ia.22 and 23 in mixed lymphocyte reactions and immune responses are discussed.


2019 ◽  
Author(s):  
Hanyun Liu ◽  
Ting Wang ◽  
Xi Chen ◽  
Jing Jiang ◽  
Nianhua Song ◽  
...  

Abstract Background: Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases. However, the pathogenesis of NAFLD is largely unknown. Here, we investigated the specific role of miR-499-5p in NAFLD. Method: Free fatty acid (FFA) was used to induce HL-7702 cell line to establish a NAFLD cell model, and animal models of NAFLD were constructed by feeding C57BL/6 mice with high fat diet (HFD). Expression levels of miR-499-5p in the HL-7702 cells and C57BL/6 mice were determined by RT-qPCR. In addition, functional experiments were carried out through transfecting miR-499-5p inhibitor into NAFLD cells, and injecting NAFLD mice with a lentiviral vector with knock down the miR-499-5p . Furthermore, the effects of miR-499-5p inhibition on lipidation and inflammation were investigated by oil red O staining, HE staining, and biochemical analysis. Results: Compared with normal controls, the expression of miR-499-5p was significantly up-regulated in NAFLD cells and tissues in mouse (P < 0.05). After NAFLD cells transfected by miR-499-5p inhibitor, the expression of miR-499-5p was inhibited, the lipid deposition and content of TG were reduced, and the lipidation was improved (P < 0.05). Simultaneously, after NAFLD mice were injected with knocked down the miR-499-5p lentiviral vector, the degree of lipid droplet deposition and content of TG were also reduced. Besides, it also decreased the levels of TC and AST in serum, and improved hepatic lipid metabolism (P < 0.05). Conclusion: Inhibition of miR-499-5p expression improved NAFLD in mice, which provided a new direction for the treatment of NAFLD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Qin ◽  
Yanwei Yu ◽  
Chendong Yang ◽  
Zhuien Wang ◽  
Yi Yang ◽  
...  

Inflammatory bowel disease (IBD) is an important high-risk factor that promotes the occurrence and development of colon cancer. Research on the mechanism of regulating NLRP3 can provide potential targets for treating NLRP3 inflammasome–related diseases and changing the inflammatory potential of immune cells. In this study, the effects of atractylenolide I on colitis-associated CRC (caCRC) and inflammasome activation were investigated both in vivo and in vitro. Furthermore, the role of atractylenolide I on Drp1-mediated mitochondrial fission was analyzed via Western blotting and transmission electron microscopy (TEM). Moreover, the Drp1 overexpression lentiviral vector was used to study the role of Drp1 on the signaling mechanisms of atractylenolide I. Atractylenolide I treatment significantly reduced the cell viability of human HCT116 and SW480 cells and induced apoptosis, and effectively inhibited colon tumors in the AOM/DSS mouse model. The reduction of NLRP3 inflammasome activation and excessive fission of mitochondria mediated by Drp1 were associated with the administration of atractylenolide I. Upregulation of Drp1 reversed the inhibitory effect of atractylenolide I on the activation of NLRP3 inflammasomes. Overexpressing the Drp1 expression counteracted the restraint of atractylenolide I on the release of IL-1β of LPS/DSS-stimulated BMDMs. Atractylenolide I inhibited NLRP3 and caspase-1 expression in mice BMDMs, with no influence in the Drp1-overexpressed BMDMs. These results demonstrated that atractylenolide I inhibits NLRP3 inflammasome activation in colitis-associated colorectal cancer via suppressing Drp1-mediated mitochondrial fission.


2021 ◽  
Vol 21 ◽  
Author(s):  
Xuping Niu ◽  
Qixin Han ◽  
Xiaofang Li ◽  
Juan Li ◽  
Yanmin Liu ◽  
...  

Objective: Psoriasis is a chronic inflammatory skin disease highly depending on angiogenesis. Our prior results showed that the mRNA and protein of Del-1 in dermal mesenchymal stem cells (dMSCs) was up-regulated from psoriasis. Our aim was further to investigate the role of Del-1 from dMSCs in the pathogenesis of psoriasis and confirm the effect of Del-1 on the pathogenesis of psoriasis. Methods: We conducted an immunohistochemistry experiment to further investigate the expression of Del-1in psoriatic lesions. In addition, dMSCs with over-expressed Del-1 via the lentiviral vector of Del-1 were co-cultured with ECs, and the protein expression of integrins (αvβ3, αvβ5 ,and α5β1) of ECs were detected by western blotting. Results: This research showed that Del-1 was significantly increased in lesions of patients with psoriasis (p< .05, 9.96 vs. 2.18), and Del-1 from dMSCs successfully induced up-regulation of integrins α5β1 and αvβ3 (all p < .05). Conclusion: This study demonstrated that Del-1 from dMSCs was involved in the pathogenesis of psoriasis through induced angiogenesis. And Del-1, αvβ3 and α5β1 may be potential new targets for inhibiting angiogenesis in psoriasis.


2017 ◽  
Vol 37 (9) ◽  
pp. 944-952 ◽  
Author(s):  
X Wang ◽  
K Xu ◽  
XY Yang ◽  
J Liu ◽  
Q Zeng ◽  
...  

Silicosis is an irreversible lung disease resulting from long-term inhalation of occupational dust containing silicon dioxide. However, the pathogenesis of silicosis has not been clearly understood yet. Accumulating evidence suggests that miR-29 may have a significant anti-fibrotic capacity, meanwhile it may relate to Wnt/β-catenin pathway. The purpose of this study was to discuss the role of miR-29 in the progression of silicosis. A lentiviral vector was constructed, named Lv-miR-29c, which was overexpressing miR-29c. In vivo, intratracheal treatment with Lv-miR-29c significantly increased expression of miR-29c, and reduced expression of β-catenin, matrix metalloproteinase (MMP)-2, and MMP-9 in the lung and levels of transforming growth factor-beta 1 (TGF-β1) and interleukin-6 (IL-6) in bronchoalveolar lavage fluid, and notably attenuated pulmonary fibrosis as evidenced by hydroxyproline content in silica-administered mice. These results indicated that miR-29c inhibited the development of silica-induced lung fibrosis. Thus, miR-29c may be a candidate target for silicosis treatment via its regulation of the Wnt/β-catenin pathway.


Sign in / Sign up

Export Citation Format

Share Document