scholarly journals Quantum Systems on Non-$k$-Hyperfinite Complexes: a generalization of classical statistical mechanics on expander graphs

2014 ◽  
Vol 14 (1&2) ◽  
pp. 144-180
Author(s):  
Michael H. Freedman ◽  
Matthew B. Hastings

We construct families of cell complexes that generalize expander graphs. These families are called non-$k$-hyperfinite, generalizing the idea of a non-hyperfinite (NH) family of graphs. Roughly speaking, such a complex has the property that one cannot remove a small fraction of points and be left with an object that looks $k-1$-dimensional at large scales. We then consider certain quantum systems on these complexes. A future goal is to construct a family of Hamiltonians such that every low energy state has topological order as part of an attempt to prove the quantum PCP conjecture. This goal is approached by constructing a toric code Hamiltonian with the property that every low energy state without vertex defects has topological order, a property that would not hold for any local system in any lattice $Z^d$ or indeed on any $1$-hyperfinite complex. Further, such NH complexes find application in quantum coding theory. The hypergraph product codes\cite{hpc} of Tillich and Z\'{e}mor are generalized using NH complexes.

2013 ◽  
Vol 13 (5&6) ◽  
pp. 393-429
Author(s):  
Matthew Hastings

We consider the entanglement properties of ground states of Hamiltonians which are sums of commuting projectors (we call these commuting projector Hamiltonians), in particular whether or not they have ``trivial" ground states, where a state is trivial if it is constructed by a local quantum circuit of bounded depth and range acting on a product state. It is known that Hamiltonians such as the toric code only have nontrivial ground states in two dimensions. Conversely, commuting projector Hamiltonians which are sums of two-body interactions have trivial ground states\cite{bv}. Using a coarse-graining procedure, this implies that any such Hamiltonian with bounded range interactions in one dimension has a trivial ground state. In this paper, we further explore the question of which Hamiltonians have trivial ground states. We define an ``interaction complex" for a Hamiltonian, which generalizes the notion of interaction graph and we show that if the interaction complex can be continuously mapped to a $1$-complex using a map with bounded diameter of pre-images then the Hamiltonian has a trivial ground state assuming one technical condition on the Hamiltonians holds (this condition holds for all stabilizer Hamiltonians, and we additionally prove the result for all Hamiltonians under one assumption on the $1$-complex). While this includes the cases considered by Ref.~\onlinecite{bv}, we show that it also includes a larger class of Hamiltonians whose interaction complexes cannot be coarse-grained into the case of Ref.~\onlinecite{bv} but still can be mapped continuously to a $1$-complex. One motivation for this study is an approach to the quantum PCP conjecture. We note that many commonly studied interaction complexes can be mapped to a $1$-complex after removing a small fraction of sites. For commuting projector Hamiltonians on such complexes, in order to find low energy trivial states for the original Hamiltonian, it would suffice to find trivial ground states for the Hamiltonian with those sites removed. Such trivial states can act as a classical witness to the existence of a low energy state. While this result applies for commuting Hamiltonians and does not necessarily apply to other Hamiltonians, it suggests that to prove a quantum PCP conjecture for commuting Hamiltonians, it is worth investigating interaction complexes which cannot be mapped to $1$-complexes after removing a small fraction of points. We define this more precisely below; in some sense this generalizes the notion of an expander graph. Surprisingly, such complexes do exist as will be shown elsewhere\cite{fh}, and have useful properties in quantum coding theory.


2020 ◽  
pp. 92-104
Author(s):  
Gershon Kurizki ◽  
Goren Gordon

Henry scores a surprise win over Eve thanks to his quantum rocket that is powered by a quantum-chargeable battery. This gadget is subject to the time–energy uncertainty relation that may result in the battery having more energy than expected. This occurs if an energy measurement within a short time “collapses” the battery randomly to the highest energy state. Intriguingly, time is not a quantum observable. This raises the question that was hotly debated by Bohr and Einstein: how can time be uncertain and affect the energy uncertainty? The more general question is: what is the meaning of time, energy and their uncertainty in physics and in human experience? Attempts to define time have been the subject of philosophical controversy throughout millennia. The appendix to this chapter introduces the Schrödinger equation that governs the dynamics of quantum systems and their time–energy uncertainty.


2018 ◽  
Vol 20 (6) ◽  
pp. 063032
Author(s):  
L Lepori ◽  
A Celi ◽  
A Trombettoni ◽  
M Mannarelli

1989 ◽  
Vol 120 ◽  
pp. 323-326
Author(s):  
Hans H. Hippelein ◽  
Guido Münch

Observations of H2 lines in the IR have been mostly restricted to those with upper levels of low energy, which can be excited either collisionally in shocks or radiatively by UV starlight. In order to discriminate between the two excitation mechanisms we have measured in 11 μm range lines of the v=2-0 band arising from high rotational levels J≤;13. Their intensities, together with those of the IR lines, allow an estimate of the line of sight effective extinction and a determination of the rotational temperature measuring their joint degree of excitation. The latter parameter provides information about the energy state of the molecules at their formation and ejection from grain surfaces and thus constrains the hypothetical models for H2 molecule formation.


2009 ◽  
Vol 34 (3) ◽  
pp. 382-388 ◽  
Author(s):  
Kent Sahlin

The rate of lipid oxidation during exercise is controlled at several sites, and there is a reciprocal dependency between oxidation of lipids and carbohydrates (CHO). It is well known that the proportion of the 2 fuels oxidized is influenced by substrate availability and exercise intensity, but the mechanisms regulating fuel preferences remain unclear. During intense exercise, oxidation of long-chain fatty acids (LCFAs) decreases, and the major control is likely to be at the mitochondrial level. Potential mitochondrial sites for control of lipid oxidation include transport of LCFAs into mitochondrial matrix, β-oxidation, the tricarboxylic acid cycle, and the electron transport chain (ETC). CHO catabolism may impair lipid oxidation by interfering with the transfer of LCFAs into mitochondria and by competing for mutual cofactors (i.e., nicotinamide adenine dinucleotide and (or) coenzyme A (CoA)). The different effect of energy state on the catabolism of CHO and lipids is likely to be of major importance in explaining the shift in fuel utilization during intensive exercise. Formation of acetyl-CoA from CHO is activated by a low energy state, and will lead to accumulation of products that are inhibitory to lipid oxidation. In contrast, β-oxidation of LCFAs to acetyl-CoA is not stimulated by a low energy state. Further interaction between CHO and LCFAs may occur by substrate competition for electron carriers at ETC, due to provisions of electrons through different complexes. Feedback inhibition of β-oxidation by redox state is thought to be an important mechanism for the slowing of lipid oxidation during intensive exercise.


2001 ◽  
Vol 86 (4) ◽  
pp. 616-619 ◽  
Author(s):  
G. Lubinski ◽  
Z. Juhász ◽  
R. Morgenstern ◽  
R. Hoekstra

Author(s):  
А.В. Громов ◽  
М.Б. Гойхман ◽  
Н.Ф. Ковалев ◽  
А.В. Палицин ◽  
M.I. Fuks ◽  
...  

AbstractThe possible formation of an extended low-energy state of electron beam in a coaxial diode with homogeneous cylindrical anode and moderate magnetic field with inhomogeneous profile is demonstrated for the first time. It is established that, depending on the magnetic field configuration, virtual cathodes (VCs) of two types can be formed: (i) a stationary VC with a localized reflection plane and (ii) a moving VC with a two-stream low-energy state of the electron beam.


2021 ◽  
Author(s):  
Leo Bellin ◽  
Michael Melzer ◽  
Alexander Hilo ◽  
Diana Laura Garza Amaya ◽  
Isabel Keller ◽  
...  

ABSTRACTDe novo synthesis of pyrimidines is an essential and highly conserved pathway in all organisms. A peculiarity in plants is the localization of the first committed step, catalyzed by aspartate transcarbamoylase (ATC), in chloroplasts. By contrast, the third step in the pathway is catalyzed by dihydroorotate dehydrogenase (DHODH) localized in mitochondria in eukaryotes, including plants. To unravel pathway- and organelle specific functions, we analyzed knock-down mutants in ATC and DHODH in detail. ATC knock-downs were most severely affected, exhibiting low levels of pyrimidine metabolites, a low energy state, reduced photosynthetic capacity and accumulated reactive oxygen species (ROS). Furthermore, we observed altered leaf morphology and chloroplast ultrastructure in the mutants. Although less affected, DHODH knock-down mutants showed impaired seed germination and altered mitochondrial ultrastructure. Our results point to an integration of de novo pyrimidine synthesis and cellular energy states via photosynthesis and mitochondrial respiration. These findings highlight the likelihood of further regulatory roles for ATC and DHODH in pathways located in the corresponding organelles.ONE-SENTENCE SUMMARYImpaired pyrimidine nucleotide synthesis results in a low energy state, affecting photosynthesis and organellar ultrastructure, thus leading to reduced growth, reproduction, and seed yield


2019 ◽  
Author(s):  
Xiaolong Wang ◽  
Javensius Sembiring ◽  
Phillip Koppitz ◽  
Lukas Höhndorf ◽  
Chong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document