scholarly journals Is maximising current density always the optimum strategy in electrolyser design for electrochemical CO2 conversion to chemicals?

Author(s):  
Sahil Garg ◽  
Mengran Li ◽  
Mohamed Nazmi Idros ◽  
Yuming Wu ◽  
Geoff Wang ◽  
...  

Electrochemical conversion of CO2 to chemicals and fuels can potentially play a role in reducing CO2 emissions from industrial processes and providing non-fossil fuel routes to important chemical feedstocks. Most of the recent research on electrocatalysts for CO2 reduction (CO2R) focuses on achieving maximum selectivity for desired products at the highest possible current density. This approach assumes that maximising current density leads to the lowest cost of CO2R (e.g. $·kg-1 CO2 converted) because it requires the lowest catalyst loadings and electrode area per kg of CO2 treated and thus minimising the electrolyser equipment cost. Using a techno-economic analysis (TEA) model with experimental data from a two-cell vapor fed electrolyser, we show this assumption is not valid for CO2 conversion to CO if the process model accounts for relationships between current density, selectivity, cell voltage, ohmic losses, and product separation costs. Instead, our model predicts the lowest CO production costs at current densities from 500 – 700 A·m-2. At current densities above 1000 A·m-2, growing ohmic losses in the electrolyser lead to increasing power costs that become much larger than any capital savings related to reduced electrode area at the higher current density. Further, we investigate different opportunities that could bring down the CO production cost, however, in all the cases, the lowest CO production cost was found at current densities between 600 – 1400 A·m-2. This work also provides insights that can help identify feasible design spaces for both catalysts and electrolysers to develop CO2 conversion technologies that could soon compete on a cost basis with the natural reforming technologies to produce CO (0.60 $·kg-1 market price).

2005 ◽  
Vol 289 (3) ◽  
pp. H1265-H1276 ◽  
Author(s):  
Man-Jiang Xie ◽  
Li-Fan Zhang ◽  
Jin Ma ◽  
Hong-Wei Cheng

Exposure to microgravity leads to a sustained elevation in transmural pressure across the cerebral vasculature due to removal of hydrostatic pressure gradients. We hypothesized that ion channel remodeling in cerebral vascular smooth muscle cells (VSMCs) similar to that associated with hypertension may occur and play a role in upward autoregulation of cerebral vessels during microgravity. Sprague-Dawley rats were subjected to 4-wk tail suspension (Sus) to simulate the cardiovascular effect of microgravity. Large-conductance Ca2+-activated K+ (BKCa), voltage-gated K+ (KV), and L-type voltage-dependent Ca2+ (CaL) currents of Sus and control (Con) rat cerebral VSMCs were investigated with a whole cell voltage-clamp technique. Under the same experimental conditions, KV, BKCa, and CaL currents of cerebral VSMCs from adult spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were also investigated. KV current density decreased in Sus rats vs. Con rats [1.07 ± 0.14 ( n = 22) vs. 1.31 ± 0.28 ( n = 16) pA/pF at +20 mV ( P < 0.05)] and BKCa and CaL current densities increased [BKCa: 1.70 ± 0.37 ( n = 23) vs. 0.88 ± 0.22 ( n = 19) pA/pF at +20 mV ( P < 0.05); CaL: −2.17 ± 0.21 ( n = 35) vs. −1.31 ± 0.10 ( n = 26) pA/pF at +10 mV ( P < 0.05)]. Similar changes were also observed in SHR vs. WKY cerebral VSMCs: KV current density decreased [1.03 ± 0.33 ( n = 9) vs. 1.62 ± 0.64 ( n = 9) pA/pF at +20 mV ( P < 0.05)] and BKCa and CaL current densities increased [BKCa: 2.54 ± 0.47 ( n = 11) vs. 1.12 ± 0.33 ( n = 12) pA/pF at +20 mV ( P < 0.05); CaL: −3.99 ± 0.53 ( n = 12) vs. −2.28 ± 0.20 ( n = 10) pA/pF at +20 mV ( P < 0.05)]. These findings support our hypothesis, and their impact on space cardiovascular research is discussed.


2013 ◽  
Vol 10 (2) ◽  
Author(s):  
Gianfranco DiGiuseppe ◽  
Naveen K. Honnagondanahalli ◽  
Owen Taylor ◽  
Jeff Dederer

This paper reports a new 3D isothermal, steady state electrochemical modeling study for tubular solid oxide fuel cells where the testing setup is studied in order to improve fuel distribution and geometry. For the model validation, an experimental voltage-current density curve measured in house was used. This study focuses on the cell testing setup and is used to optimize the testing geometry for improved testing conditions. The mathematical model consists of coupling fluid dynamics, electrical conduction, and diffusion physics. The model indicates that flow mal-distribution may be of concern and may affect cell performance. In addition, concentrations of current densities throughout the solid oxide fuel cell may cause some hot spots. Finally, the model is able to predict the cell voltage-current density of the cell very well when compared to experimental data.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Author(s):  
M. R. McCartney ◽  
J. K. Weiss ◽  
David J. Smith

It is well-known that electron-beam irradiation within the electron microscope can induce a variety of surface reactions. In the particular case of maximally-valent transition-metal oxides (TMO), which are susceptible to electron-stimulated desorption (ESD) of oxygen, it is apparent that the final reduced product depends, amongst other things, upon the ionicity of the original oxide, the energy and current density of the incident electrons, and the residual microscope vacuum. For example, when TMO are irradiated in a high-resolution electron microscope (HREM) at current densities of 5-50 A/cm2, epitaxial layers of the monoxide phase are found. In contrast, when these oxides are exposed to the extreme current density probe of an EM equipped with a field emission gun (FEG), the irradiated area has been reported to develop either holes or regions almost completely depleted of oxygen. ’ In this paper, we describe the responses of three TMO (WO3, V2O5 and TiO2) when irradiated by the focussed probe of a Philips 400ST FEG TEM, also equipped with a Gatan 666 Parallel Electron Energy Loss Spectrometer (P-EELS). The multi-channel analyzer of the spectrometer was modified to take advantage of the extremely rapid acquisition capabilities of the P-EELS to obtain time-resolved spectra of the oxides during the irradiation period. After irradiation, the specimens were immediately removed to a JEM-4000EX HREM for imaging of the damaged regions.


2020 ◽  
Vol 8 (2) ◽  
pp. 128-149
Author(s):  
Dini Maulana Lestari

This paper will discuss about the immaterial costs and production yields at one of the refined sugar factory companies in Makassar, South Sulawesi. The theory is based on the fact that Immaterial is a cost that is almsgiving, meaning costs that are outside of the basic costs of the company in producing production, so this research aims to find out: (1) what is the production cost needed to produce this production, (2) the maximum level of production at company from 2013 to 2017. This type of research is a quantitative study because it uses a questionnaire in the form of values ​​that are processed using the marginal cost approach formula. The results of the analysis show that (1) the maximum level of production costs occurred in 2016 amounting to 6,912 with an Immaterial cost of Rp. 2,481,796,800 and the total production produced is 359,077.3 tons (2) The required workforce with the total production produced is 359,077.3 tones of 180 people including the maximum production point which means that the lowest value is achieved (optimal).    


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Nurul Mukminah ◽  
Rita Purwasih

This study aims to determine and compare the profitability of different types of broiler chicken farms (open and cloused houses) in Subang Regency. This study involved 9 farmers consisting of 5 farmers with closed house and 4 farmers with open house who partnered with PT. Surya Unggas Mandiri (PT. SUM). Production costs taken are 2 production periods from May-August 2018. Data are analyzed using economic analysis and descriptive methods. The results showed that the production cost per period per 1000 birds closed house was higher (Rp. 27.656.768,-) compared to open house (Rp. 24.975.671,-). The revenue per period per 1000 birds of closed house is higher (Rp. 30.606.931,-) compared to open house (Rp. 25.788.618,-). The profit of farmers who use closed house is higher (Rp. 2.621/period/bird) than open house (Rp.417,-). The profitability in close house s is 9.48% and is very feasible to develop


2019 ◽  
Vol 4 (2) ◽  
pp. 205-214
Author(s):  
Erika Fatma

Lot sizing problem in production planning aims to optimize production costs (processing, setup and holding cost) by fulfilling demand and resources capacity costraint. The Capacitated Lot sizing Problem (CLSP) model aims to balance the setup costs and inventory costs to obtain optimal total costs. The object of this study was a plastic component manufacturing company. This study use CLSP model, considering process costs, holding costs and setup costs, by calculating product cycle and setup time. The constraint of this model is the production time capacity and the storage capacity of the finished product. CLSP can reduce the total production cost by 4.05% and can reduce setup time by 46.75%.  Keyword: Lot size, CLSP, Total production cost.


Author(s):  
Rakesh Kumar ◽  
Gaurav Dhiman ◽  
Neeraj Kumar ◽  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
...  

AbstractThis article offers a comparative study of maximizing and modelling production costs by means of composite triangular fuzzy and trapezoidal FLPP. It also outlines five different scenarios of instability and has developed realistic models to minimize production costs. Herein, the first attempt is made to examine the credibility of optimized cost via two different composite FLP models, and the results were compared with its extension, i.e., the trapezoidal FLP model. To validate the models with real-time phenomena, the Production cost data of Rail Coach Factory (RCF) Kapurthala has been taken. The lower, static, and upper bounds have been computed for each situation, and then systems of optimized FLP are constructed. The credibility of each model of composite-triangular and trapezoidal FLP concerning all situations has been obtained, and using this membership grade, the minimum and the greatest minimum costs have been illustrated. The performance of each composite-triangular FLP model was compared to trapezoidal FLP models, and the intense effects of trapezoidal on composite fuzzy LPP models are investigated.


Land ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Congying Zhang ◽  
Qian Chang ◽  
Liqun Shao ◽  
Xuexi Huo

In the Shaanxi province, small and scattered plots impede an increase in the efficiency of apple production. Developing a moderate operation scale is a proper tool to solve inefficiencies in apple production, as it enables improving the factor allocation efficiency, resulting in higher yields, higher profit, or lower production costs. However, the moderate operation scales, based on output, profit, and production costs, may be different. This paper aimed to evaluate the moderate operation scale of apples from three perspectives of increasing yields and profits and reducing unit production cost. The study was based on survey data collected from 661 randomly selected apple farmers in eight counties of the Shaanxi province, China. The collected data were analyzed quantitatively by the input-output model, the net profit model, and unit production cost model. The findings show that: (1) The moderate operation scale oriented to increasing apple yields in the Shaanxi province should be 0.87–1.53 ha. (2) The moderate operation scale oriented to increasing the net profit of farmers in the Shaanxi province should be over 1.53 ha. (3) The moderate operation scale oriented to reducing the unit cost of apple production in the Shaanxi province should be 0.20–0.53 ha. The study provides evidence that policymakers should grasp the balance point and find the intersection of the operation scale based on output, profit, and unit production cost when guiding apple growers to carry out the moderate scale. We propose that 0.87–1.53 ha may be a suitable operation scale for apple production in the Shaanxi province at the current stage.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

Metallic and alloyed coatings are used widely in several decorative and technology-based applications. In this work, we selected Sn coatings plated on Cu substrates for joining applications. We employed two different plating baths for the fabrication of Sn and Ni coatings: acidic stannous sulfate for Sn and Watts bath for Ni layer. The plating current densities were varied from 100–500 mA/cm2. Further, the wear and friction behavior of the coatings were studied using a ball-on-disc apparatus under dry sliding conditions. The impact of current density was studied on the morphology, wear, and coefficient of friction (COF) of the resultant coatings. The wear experiments were done at various loads from 2–10 N. The sliding distance was fixed to 7 m. The wear loss was quantified in terms of the volume of the track geometry (width and depth of the tracks). The results indicate that current density has an important role in tailoring the composition and morphology of coatings, which affects the wear properties. At higher loads (8–10 N), Sn coatings on Ni/Cu had higher volume loss with a stable COF due to a mixed adhesive and oxidative type of wear mechanism.


Sign in / Sign up

Export Citation Format

Share Document