scholarly journals Gently Does It!: In Situ Preparation of Alkali Metal - Solid Electrolyte Interfaces for Photoelectron Spectroscopy

Author(s):  
Joshua Gibson ◽  
Sudarshan Narayanan ◽  
Jack Swallow ◽  
Pardeep Kumar-Thakur ◽  
Mauro Pasta ◽  
...  

The key charge transfer processes in energy storage devices occur at the electrode-electrolyte interface, which is typically buried making it challenging to access the interfacial chemistry. In the case of Li-ion batteries, metallic Li electrodes hold promise for increasing energy and power densities, and when used in conjunction with solid electrolytes (SEs) adverse safety implications associated with dendrite formation in organic liquid electrolytes can potentially be overcome. To better understand the stability of SEs when in contact with alkali metals and the reactions that occur, here we consider the deposition of thin (~10 nm) alkali metal films onto SE surfaces, that are thin enough that X-ray photoelectron spectroscopy can probe the buried electrode-electrolyte interface. We highlight the importance of in situ alkali metal deposition, by assessing the contaminant species that are present after glovebox handling and the use of ‘inert’ transfer devices. Consequently, we compare and contrast three available methods for in situ alkali-metal deposition; Li sputter deposition, Li evaporation, and Li plating induced by e− flood-gun irradiation. Studies on both a sulphide SE (Li6PS5Cl), and a single-layer graphene probe surface reveal that the more energetic Li deposition methods, such as sputtering, can induce surface damage and interfacial mixing that is not seen with thermal evaporation. This indicates that appropriate selection of the Li deposition method for in situ studies is required to observe representative behaviour, and the results of previous studies involving energetic deposition may warrant further evaluation.

1999 ◽  
Vol 593 ◽  
Author(s):  
M. Töwe ◽  
P. Reinke ◽  
P. Oelhafen

ABSTRACTAmorphous hydrogen-free carbon films (sp2-dominated a-C) were deposited under ultrahigh vacuum conditions between room temperature and 800°C. These films served as matrices for the in-situ incorporation of alkali-metal atoms (Li, Na). In-situ sample characterization was performed by photoelectron spectroscopy with both x-ray and ultraviolet excitation (XPS, UPS). While the clean metal-containing samples were prepared with metal contents of about 10 at%, a strong oxidation driven accumulation of metal atoms on the film surface exceeding 50 at% was observed upon exposure to molecular oxygen. Work-function measurements by UPS reflected the changes within the electronic structure of the material. Metal incorporation considerably decreased the work-function, but only after oxidation we observed work-functions below the values given for pure alkali metals.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2015 ◽  
Vol 6 (10) ◽  
pp. 5635-5642 ◽  
Author(s):  
Yeuk Ting Law ◽  
Spyridon Zafeiratos ◽  
Stylianos G. Neophytides ◽  
Alin Orfanidi ◽  
Dominique Costa ◽  
...  

Using near ambient pressure X-ray photoelectron spectroscopy we probe in situ the double layer at the Pt/liquid electrolyte interface.


1982 ◽  
Vol 20 ◽  
Author(s):  
D.D. Dominguez ◽  
J.L. Lakshmanan ◽  
E.F. Barbano ◽  
J.S. Murday

ABSTRACTIndividual graphite fibers (TP 4104B and GY-70) were intercalated with alkali metals using the two-zone vapor transport method commonly used to prepare alkali metal intercalated graphite. The progress of the reaction was followed in situ by measuring the electrical resistances of the fibers as the temperature difference (ΔT) between the fiber and the metal was decreased stepwise. These measurements showed that the ease and extent of intercalation are related to fiber graphitization. Without exposure to air, the temperature dependence of the resistances of the intercalated fibers were also measured from −196°C to 400°C. The measurements showed that the intercalated fibers have a metallic dependence on temperature. Tensile strength measurements on the intercalated fibers showed that intercalation of the heavy alkali metals is deleterious.


2017 ◽  
Vol 19 (12) ◽  
pp. 8496-8503 ◽  
Author(s):  
Nicolas Boulanger ◽  
Victor Yu ◽  
Michael Hilke ◽  
Michael F. Toney ◽  
David R. Barbero

In situ X-ray diffraction analysis of P3HT films during cooling down on both Si and G.


Sign in / Sign up

Export Citation Format

Share Document