scholarly journals Visible-Light-Promoted Metal-Free Ammoxidation of C(sp3)-H bonds

Author(s):  
Kathiravan Murugesan ◽  
Karsten Donabauer ◽  
Burkhard Koenig

The metal-free activation of C(<i>sp</i><sup>3</sup>)-H bonds to value-added products is of paramount importance in organic synthesis. Herein, we report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photo process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as L-menthol, amino acids and cholesterol derivatives. Further, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments and NMR‑ spectroscopic as well as kinetic studies, all supporting the proposed catalytic cycle.

2020 ◽  
Author(s):  
Kathiravan Murugesan ◽  
Karsten Donabauer ◽  
Burkhard Koenig

The metal-free activation of C(<i>sp</i><sup>3</sup>)-H bonds to value-added products is of paramount importance in organic synthesis. Herein, we report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photo process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as L-menthol, amino acids and cholesterol derivatives. Further, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments and NMR‑ spectroscopic as well as kinetic studies, all supporting the proposed catalytic cycle.


Author(s):  
Haibin Gou ◽  
Xifei Ma ◽  
Qian Su ◽  
Lei Liu ◽  
Ting Ying ◽  
...  

The development of metal-free, high effective and recyclable catalysts plays a pivotal role in transforming CO2 into high value-added products such as cyclic carbonates. In this paper, we have introduced...


2019 ◽  
Vol 48 (36) ◽  
pp. 13508-13528 ◽  
Author(s):  
Diana M. Fernandes ◽  
Andreia F. Peixoto ◽  
Cristina Freire

This review focuses on the recent developments made in the fabrication of N-doped carbon materials for enhanced CO2 conversion and electrochemical reduction into high-value-added products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Penumaka Nagababu ◽  
Sehba Anjum Mumtaz Ahmed ◽  
Y. Taraka Prabhu ◽  
Ankush kularkar ◽  
Subhamoy Bhowmick ◽  
...  

AbstractIt is a great challenge to convert thermochemically stable CO2 into value-added products such as CH4, CH3OH, CO via utilizing solar energy. It is also a difficult task to develop an efficient catalyst for the reduction of CO2. We have designed and synthesized noble metal-free photocatalytic nanostructure Ni2P/CdS and Pt/TiO2 for conversion of CO2 to methanol in the presence of sacrificial donor triethylamine (TEA) and hydrogen peroxide. The synthesised catalysts physicochemical properties were studied by using several spectroscopic techniques like; XRD, UV-DRS, XPS, TEM, SEM and PL. Quantification of methanol by GC–MS showed encouraging results of 1424.8 and 2843 μmol g−1 of catalyst for Pt/TiO2 and 5 wt% Ni2P/CdS composites, respectively. Thus, Ni2P/CdS is a promising catalyst with higher productivity and significant selectivity than in-vogue catalysts.


2020 ◽  
Vol 7 (21) ◽  
pp. 3515-3520
Author(s):  
Wubing Yao ◽  
Jiali Wang ◽  
Aiguo Zhong ◽  
Shiliang Wang ◽  
Yinlin Shao

The selective catalytic reduction of amides to value-added amine products is a desirable but challenging transformation.


2018 ◽  
Vol 28 (5) ◽  
pp. 1681-1684
Author(s):  
Georgi Toskov ◽  
Ana Yaneva ◽  
Stanko Stankov ◽  
Hafize Fidan

The European Commission defines the bioeconomy as "the production of renewable biological resources and the conversion of these resources and waste streams into value added products, such as food, feed, bio-based products and bioenergy. Its sectors and industries have strong innovation potential due to their use of a wide range of sciences, enabling and industrial technologies, along with local and implied knowledge." The Bulgarian food industry faces a lot of challenges on the local and national level, which have direct influence on the structure of the production companies. Most of the enterprises from the food sector produce under foreign brands in order to be flexible partners to the large Bulgarian retail chains. The small companies from the food sector are not able to develop as an independent competitive producer on the territory of their local markets. This kind of companies rarely has a working strategy for positioning on new markets. In order to consolidate their already built positions for long period of time, the producers are trying to optimize their operations in a short term. However, the unclear vision of the companies for the business segment does not allow them to fully develop. Tourism in Bulgaria is a significant contributor to the country's economy.


2020 ◽  
Vol 4 (7) ◽  
pp. 3726-3731
Author(s):  
Fenghui Ye ◽  
Jinghui Gao ◽  
Yilin Chen ◽  
Yunming Fang

Electroreduction of CO2 into value-added products is a promising technique in which the structure of the catalyst plays a crucial role.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


Dairy ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 202-217
Author(s):  
Michele Manoni ◽  
Donata Cattaneo ◽  
Sharon Mazzoleni ◽  
Carlotta Giromini ◽  
Antonella Baldi ◽  
...  

Milk lipids are composed of milk fat globules (MFGs) surrounded by the milk fat globule membrane (MFGM). MFGM protects MFGs from coalescence and enzymatic degradation. The milk lipid fraction is a “natural solvent” for macronutrients such as phospholipids, proteins and cholesterol, and micronutrients such as minerals and vitamins. The research focused largely on the polar lipids of MFGM, given their wide bioactive properties. In this review we discussed (i) the composition of MFGM proteome and its variations among species and phases of lactation and (ii) the micronutrient content of human and cow’s milk lipid fraction. The major MFGM proteins are shared among species, but the molecular function and protein expression of MFGM proteins vary among species and phases of lactation. The main minerals in the milk lipid fraction are iron, zinc, copper and calcium, whereas the major vitamins are vitamin A, β-carotene, riboflavin and α-tocopherol. The update and the combination of this knowledge could lead to the exploitation of the MFGM proteome and the milk lipid fraction at nutritional, biological or technological levels. An example is the design of innovative and value-added products, such as MFGM-supplemented infant formulas.


Sign in / Sign up

Export Citation Format

Share Document