scholarly journals AutoDetect-mNP: An Unsupervised Machine Learning Algorithm for Automated Analysis of Transmission Electron Microscope Images of Metal Nanoparticles

Author(s):  
Xingzhi Wang ◽  
Jie Li ◽  
Hyun Dong Ha ◽  
Jakob Dahl ◽  
Teresa Head-Gordon ◽  
...  

The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which new high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labelled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information of convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two datasets of bright field TEM images of Au nanoparticles with different shapes, demonstrating that the algorithm is quantitatively reliable, and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of newly synthesized mNPs, and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.

2020 ◽  
Author(s):  
Xingzhi Wang ◽  
Jie Li ◽  
Hyun Dong Ha ◽  
Jakob Dahl ◽  
Teresa Head-Gordon ◽  
...  

The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which new high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labelled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information of convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two datasets of bright field TEM images of Au nanoparticles with different shapes, demonstrating that the algorithm is quantitatively reliable, and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of newly synthesized mNPs, and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.


2021 ◽  
Author(s):  
Xingzhi Wang ◽  
Jie Li ◽  
Hyun Dong Ha ◽  
Jakob Dahl ◽  
Justin C. Ondry ◽  
...  

The synthesis quality of artificial inorganic nanocrystals is most often assessed by transmission electron microscopy (TEM) for which new high-throughput advances have dramatically increased both the quantity and information richness of metal nanoparticle (mNP) characterization. Existing automated data analysis algorithms of TEM mNP images generally adopt a supervised approach, requiring a significant effort in human preparation of labelled data that reduces objectivity, efficiency, and generalizability. We have developed an unsupervised algorithm AutoDetect-mNP for automated analysis of TEM images that objectively extracts morphological information of convex mNPs from TEM images based on their shape attributes, requiring little to no human input in the process. The performance of AutoDetect-mNP is tested on two datasets of bright field TEM images of Au nanoparticles with different shapes, demonstrating that the algorithm is quantitatively reliable, and can thus serve as a generalizable measure of the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm will aid in future developments of high-throughput characterization of newly synthesized mNPs, and the future advent of time-resolved TEM studies that can investigate reaction mechanisms of mNP synthesis and reactivity.


2000 ◽  
Vol 6 (S2) ◽  
pp. 228-229
Author(s):  
M. A. Schofield ◽  
Y. Zhu

Quantitative off-axis electron holography in a transmission electron microscope (TEM) requires careful design of experiment specific to instrumental characteristics. For example, the spatial resolution desired for a particular holography experiment imposes requirements on the spacing of the interference fringes to be recorded. This fringe spacing depends upon the geometric configuration of the TEM/electron biprism system, which is experimentally fixed, but also upon the voltage applied to the biprism wire of the holography unit, which is experimentally adjustable. Hence, knowledge of the holographic interference fringe spacing as a function of applied voltage to the electron biprism is essential to the design of a specific holography experiment. Furthermore, additional instrumental parameters, such as the coherence and virtual size of the electron source, for example, affect the quality of recorded holograms through their effect on the contrast of the holographic fringes.


MRS Bulletin ◽  
2021 ◽  
Author(s):  
Haimei Zheng

AbstractThe development of liquid cells for transmission electron microscopy has enabled breakthroughs in our ability to follow nanoscale structural, morphological, or chemical changes during materials growth and applications. Time-resolved high-resolution imaging and chemical analysis through liquids opened the opportunity to capture nanoscale dynamic processes of materials, including reaction intermediates and the transformation pathways. In this article, a series of work is highlighted with topics ranging from liquid cell developments to in situ studies of nanocrystal growth and transformations, dendrite formation, and suppression of lithium dendrites through in situ characterization of the solid–electrolyte interphase chemistry. The understanding garnered is expected to accelerate the discovery of novel materials for applications in energy storage, catalysis, sensors, and other functional devices.


2006 ◽  
Vol 46 ◽  
pp. 146-151
Author(s):  
Andriy Lotnyk ◽  
Stephan Senz ◽  
Dietrich Hesse

Single phase TiO2 thin films of anatase structure have been prepared by reactive electron beam evaporation. Epitaxial (012)- and (001)-oriented anatase films were successfully obtained on (110)- and (100)-oriented SrTiO3 substrates, respectively. X-ray diffraction and cross section transmission electron microscopy investigations revealed a good epitaxial quality of the anatase films grown on the SrTiO3 substrates.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2236
Author(s):  
Arántzazu Núñez-Cascajero ◽  
Fernando B. Naranjo ◽  
María de la Mata ◽  
Sergio I. Molina

Compact Al0.37In0.63N layers were grown by radiofrequency sputtering on bare and 15 nm-thick AlN-buffered Si (111) substrates. The crystalline quality of the AlInN layers was studied by high-resolution X-ray diffraction measurements and transmission electron microscopy. Both techniques show an improvement of the structural properties when the AlInN layer is grown on a 15 nm-thick AlN buffer. The layer grown on bare silicon exhibits a thin amorphous interfacial layer between the substrate and the AlInN, which is not present in the layer grown on the AlN buffer layer. A reduction of the density of defects is also observed in the layer grown on the AlN buffer.


2004 ◽  
Vol 818 ◽  
Author(s):  
Zhiheng Yu ◽  
Li Guo ◽  
Hui Du ◽  
Todd Krauss ◽  
John Silcox

AbstractScanning transmission electron microscopy (STEM) coupled with electron energy loss spectroscopy (EELS) was used to determine the distribution of ZnS shell material on colloidal core-shell CdSe/ZnS quantum dots (QDs). A sub-nm electron probe was placed at various locations on core-shell QDs to ascertain the chemical distribution of the shell material. While a definite shell of ZnS was detected surrounding the CdSe core, the integrated EELS signals from positions around the QD suggest the distribution of the shell material may not be uniform. A non-uniform shell implies a reduced quality of the QD surface passivation.


1996 ◽  
Vol 449 ◽  
Author(s):  
R. Singh ◽  
W.D. Herzog ◽  
D. Doppalapudi ◽  
M.S. ÜnlÜ ◽  
B.B. Goldberg ◽  
...  

ABSTRACTWe report the growth of InGaN/AIGaN MQWs on c-plane sapphire by electron cyclotron resonance assisted molecular beam epitaxy (ECR-MBE). Two types of structures were investigated; one employing a GaN and the other a A1GaN barrier layer. The first structure consists of five periods of 80 Å thick In0.09Ga0.91N wells separated by 90 Å thick GaN barriers. The second structure consists of|seven periods of 120 Å thick In0.35Ga0.65N wells and Al0.1Ga0.9N barriers. The substrate temperature was kept constant during the growth of both the wells and the barriers, thus avoiding the need for any temperature cycling during the growth, which may lead to interfacial contamination. The films were characterized by cross sectional transmission electron microscopy (TEM), room temperature photoluminescence (PL) and sub-micron resolution luminescence microscopy. TEM images show sharp and abrupt interfaces, thus confirming the high interfacial quality of the MQW structures. Both structures exhibit strong RT luminescence emission peaking at 387 nm (FWHM = 16nm) for the In0.09Ga0.91N/GaN structure and at 463 nm (FWHM = 28nm) for the In0.35Ga0.65N/A10.1Ga0 9N structure. The high resolution luminescence microscopy studies reveal that the radiative recombination for the InGaN quantum wells is 60–70 times more efficient than for the underlying GaN film.


2003 ◽  
Vol 18 (7) ◽  
pp. 1723-1732 ◽  
Author(s):  
K. J. Leonard ◽  
S. Kang ◽  
A. Goyal ◽  
K. A. Yarborough ◽  
D. M. Kroeger

The microstructural changes associated with the reduced dependence of critical current density (Jc) versus thickness of thick, epitaxial YBa2Cu3O7–δ (YBCO) films on rolling-assisted biaxially textured substrates (RABiTS) were investigated. Pulsed laser deposited YBCO films varying in thickness from 1.0 to 6.4 ?m on RABiTS with an architecture of Ni–3 at.% W/Y2O3/yttrium-stabilized-zirconia/CeO2/YBCO were prepared for cross-sectional transmission electron microscopy studies. Dramatic improvements in physical properties and microstructural quality were observed resulting from the use of Ni–3 at.% W substrates, which provided a sharper texture over earlier Ni substrates, and replacement of CeO2 with Y2O3 as the seed layer within the buffers. The YBCO films showed exceptional orientation up to 6.4 μm thickness, with no misoriented grains or dead layers observed and only limited reaction between the YBCO and CeO2 cap layer. The high quality of the films was also attributed in part to the formation of a tungsten oxide layer forming at the top of the Ni–3% W substrate, limiting the growth of deleterious NiO into the conductor.


2021 ◽  
Author(s):  
Neil Connor Payne ◽  
Semer Maksoud ◽  
Bakhos Tannous ◽  
Ralph Mazitschek

We describe a generalizable time-resolved Förster resonance energy transfer (TR-FRET)-based platform to profile the cellular action of heterobifunctional degraders (or proteolysis-targeting chimeras; PROTACs), capable of both accurately quantifying protein levels in whole cell lysates in less than 1 h and measuring small-molecule target engagement to endogenous proteins, here specifically for human bromodomain-containing protein 4 (BRD4). The detection mix consists of a single primary antibody targeting the protein of interest, a luminescent donor-labeled anti-species nanobody, and a fluorescent acceptor ligand. Importantly, our strategy can readily be applied to other targets of interest and will greatly facilitate the cell-based profiling of small molecule inhibitors and PROTACs in high-throughput format with unmodified cell lines. We furthermore validate our platform in the characterization of celastrol, a p-quinone methide-containing pentacyclic triterpenoid, as a broad cysteine-targeting E3 ubiquitin ligase warhead for potent and efficient targeted protein degradation


Sign in / Sign up

Export Citation Format

Share Document