scholarly journals Pushing the Limits of NMR Cryoporometry in Polymers from Nanometer to Micron

Author(s):  
J. Beau W. Webber ◽  
Alexandre Welle ◽  
vincent livadaris ◽  
Andrey Andreev

We report for the first time the nuclear magnetic resonance cryoporometry (NMRC) pore size distribution study of polypropylene homopolymer fluffs in a wide range from several nanometers up to almost one micrometer. The method, being applicable to fragile materials, provides an opportunity to employ a set of different probe molecules, such as dodecane and hexadecane in this study, to characterize the pore sizes and swelling effect of the polymers. The fluffs have been proven to be essentially macroporous with a minor mesopore part and negligible pore volume of micropores. The residual silica porosity analysis performed to understand the origin of polymer macroporosity emphasize the porosity hidden by the main mesoporosity peak of silicon oxide. This residual macroporosity would seem similar to the macroporosity of the PPH fluffs in terms of PSD. NMRC has been shown to provide robust interconsistent and reproducible pore size distributions of polymers and silicas within the range from several nanometer up to 2 micrometers.

2020 ◽  
Author(s):  
J. Beau W. Webber ◽  
Alexandre Welle ◽  
vincent livadaris ◽  
Andrey Andreev

We report for the first time the nuclear magnetic resonance cryoporometry (NMRC) pore size distribution study of polypropylene homopolymer fluffs in a wide range from several nanometers up to almost one micrometer. The method, being applicable to fragile materials, provides an opportunity to employ a set of different probe molecules, such as dodecane and hexadecane in this study, to characterize the pore sizes and swelling effect of the polymers. The fluffs have been proven to be essentially macroporous with a minor mesopore part and negligible pore volume of micropores. The residual silica porosity analysis performed to understand the origin of polymer macroporosity emphasize the porosity hidden by the main mesoporosity peak of silicon oxide. This residual macroporosity would seem similar to the macroporosity of the PPH fluffs in terms of PSD. NMRC has been shown to provide robust interconsistent and reproducible pore size distributions of polymers and silicas within the range from several nanometer up to 2 micrometers.


2014 ◽  
Vol 936 ◽  
pp. 942-949 ◽  
Author(s):  
Hao Tian Zhang ◽  
Qiu Yu Zhang ◽  
Bao Liang Zhang ◽  
Chun Mei Li

Porous properties have notable effect on separating effect of organic polymer-based monolithic column. Different applications of monolithic columns require tailored pore size distributions. On account of that, P(GMA-co-EGDMA) monolithic columns were prepared with novel ternary porogenic agents. Glass tubes was chosen as polymerization mold. Moreover, factors influencing the inner pore morphology, pore size and specific surface area were investigated systematically. The results showed that the increasing of the solubility of porogenic agents and the amount of crosslinker, the decreasing of the amount of porogenic agents and temperature rising all could give rise to the decreasing of pore size. Remarkably, the effect of initiator was studied for the first time. The results showed that amount of initiator had no remarkable influence on porous properties. By controlling effect factors, P(GMA-co-EGDMA) Monolithic Columns with pore size from dozens to thousands of nanometer, which can be applied in separation of molecules with different size.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Dengke Liu ◽  
Tao Tian ◽  
Ruixiang Liang ◽  
Fu Yang ◽  
Feng Ye

Understanding pore structure would enable us to obtain a deeper insight into the fluid mechanism in porous media. In this research, multifractal analysis by various experiments is employed to analyze the pore structure and heterogeneity characterization in the source rock in Ordos Basin, China. For this purpose, imaging apparatus, intrusion tests, and nonintrusion methods have been used. The results show that the objective shale reservoir contains complex pore network, and minor pores dominant the pore system. Both intrusion and nonintrusion methods detected pore size distributions show multifractal nature, while the former one demonstrates more heterogeneous features. The pore size distributions acquired by low temperature adsorption and nuclear magnetic resonance have relatively good consistence, indicating that similar pore network detection method may share the same mechanism, and the full-ranged pore size distributions need to be acquired by multitechniques. Chlorite has an obvious impact on the heterogeneity of pore structure in narrow pore size range, while illite and I/S mixed layer influence that in wide range. Kerogen index is the fundamental indicators of geochemical parameters. With the decrease of averaged small and middle/large pore radius, the heterogeneity of pore structures increase in narrow and wide ranges, respectively. This work employed a comprehensive methodology based on multitechniques and helps to explore how pore networks affect reservoir quality in shale reservoirs.


2006 ◽  
Vol 309 (1-2) ◽  
pp. 157-162 ◽  
Author(s):  
Oleg Petrov ◽  
István Furó ◽  
Michael Schuleit ◽  
Rainer Domanig ◽  
Mark Plunkett ◽  
...  

2003 ◽  
Vol 18 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Miguel O. Prado ◽  
Edgar D. Zanotto ◽  
Catia Fredericci

We used the Clusters model to study the densification kinetics and resulting porosity of a compact of polydispersed soda-;lime-;silica glass spheres. In addition to the physical data (viscosity, surface tension, particle size distribution) required by the Clusters model, for the first time in glass-;sintering studies, we took extra variables into account: the average number of necks per sphere, the effects of pre-;existing crystals on the particle surfaces, and sample size. The model predicted both the densification kinetics and the resulting pore-;size distribution of sintered compacts. A cross section of a porous sample displayed a porosity pattern that agreed with computer-;simulated cross sections, whose pore-;size distributions was calculated via the Clusters model using a Monte Carlo technique. Its capacity to predict both density and pore-;size distribution makes the Clusters model a valuable tool for designing sintered glasses with any desired microstructure.


2020 ◽  
Author(s):  
Scott C. Hauswirth ◽  
◽  
Majdi Abou Najm ◽  
Christelle Basset

Fuel ◽  
2017 ◽  
Vol 206 ◽  
pp. 352-363 ◽  
Author(s):  
Yong Li ◽  
Cheng Zhang ◽  
Dazhen Tang ◽  
Quan Gan ◽  
Xinlei Niu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document