Facile Fabrication of Ultralow-Density Transparent Boehmite Nanofiber Cryogel Monoliths and Their Application in Volumetric Three-Dimensional Displays

Author(s):  
Gen Hayase ◽  
Takuya Funatomi ◽  
Kota Kumagai

Low bulk density transparent porous monoliths have unique optical properties such as low refractive index and usually can be obtained via supercritical drying to prevent deformation and collapse of pore structure. We succeeded in fabricating a transparent cryogel with a bulk density of 3.5 mg cm<sup>−3</sup> by vacuum freeze drying of a monolithic wet gel composed of boehmite nanofibers. In the case of adding a functional material into the starting sol of the gel, a composite material can be obtained. We analyzed the optical properties of transparent cryogels using image processing (direct-global separation) and applied the composite with a fluorescent molecule to volumetric three-dimensional (3D) displays.

2017 ◽  
Author(s):  
Gen Hayase ◽  
Takuya Funatomi ◽  
Kota Kumagai

Low bulk density transparent porous monoliths have unique optical properties such as low refractive index and usually can be obtained via supercritical drying to prevent deformation and collapse of pore structure. We succeeded in fabricating a transparent cryogel with a bulk density of 3.5 mg cm<sup>−3</sup> by vacuum freeze drying of a monolithic wet gel composed of boehmite nanofibers. In the case of adding a functional material into the starting sol of the gel, a composite material can be obtained. We analyzed the optical properties of transparent cryogels using image processing (direct-global separation) and applied the composite with a fluorescent molecule to volumetric three-dimensional (3D) displays.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Luca Tomarchio ◽  
Salvatore Macis ◽  
Annalisa D’Arco ◽  
Sen Mou ◽  
Antonio Grilli ◽  
...  

AbstractThe diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.


Author(s):  
Sterling P. Newberry

The beautiful three dimensional representation of small object surfaces by the SEM leads one to search for ways to open up the sample and look inside. Could this be the answer to a better microscopy for gross biological 3-D structure? We know from X-Ray microscope images that Freeze Drying and Critical Point Drying give promise of adequately preserving gross structure. Can we slice such preparations open for SEM inspection? In general these preparations crush more readily than they slice. Russell and Dagihlian got around the problem by “deembedding” a section before imaging. This some what defeats the advantages of direct dry preparation, thus we are reluctant to accept it as the final solution to our problem. Alternatively, consider fig 1 wherein a freeze dried onion root has a window cut in its surface by a micromanipulator during observation in the SEM.


Author(s):  
Weiping Liu ◽  
John W. Sedat ◽  
David A. Agard

Any real world object is three-dimensional. The principle of tomography, which reconstructs the 3-D structure of an object from its 2-D projections of different view angles has found application in many disciplines. Electron Microscopic (EM) tomography on non-ordered structures (e.g., subcellular structures in biology and non-crystalline structures in material science) has been exercised sporadically in the last twenty years or so. As vital as is the 3-D structural information and with no existing alternative 3-D imaging technique to compete in its high resolution range, the technique to date remains the kingdom of a brave few. Its tedious tasks have been preventing it from being a routine tool. One keyword in promoting its popularity is automation: The data collection has been automated in our lab, which can routinely yield a data set of over 100 projections in the matter of a few hours. Now the image processing part is also automated. Such automations finish the job easier, faster and better.


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


1998 ◽  
Vol 10 (1-3) ◽  
pp. 100-108 ◽  
Author(s):  
Alicia Colson ◽  
Ross Parry

This article argues that the analysis of a threedimensional image demanded a three-dimensional approach. The authors realise that discussions of images and image processing inveterately conceptualise representation as being flat, static, and finite. The authors recognise the need for a fresh acuteness to three-dimensionality as a meaningful – although problematic – element of visual sources. Two dramatically different examples are used to expose the shortcomings of an ingrained two-dimensional approach and to facilitate a demonstration of how modern (digital) techniques could sanction new historical/anthropological perspectives on subjects that have become all too familiar. Each example could not be more different in their temporal and geographical location, their cultural resonance, and their historiography. However, in both these visual spectacles meaning is polysemic. It is dependent upon the viewer's spatial relationship to the artifice as well as the spirito-intellectual viewer within the community. The authors postulate that the multi- faceted and multi-layered arrangement of meaning in a complex image could be assessed by working beyond the limitations of the two-dimensional methodological paradigm and by using methods and media that accommodated this type of interconnectivity and representation.


Author(s):  
Seok Lee ◽  
Juyong Park ◽  
Dongkyung Nam

In this article, the authors present an image processing method to reduce three-dimensional (3D) crosstalk for eye-tracking-based 3D display. Specifically, they considered 3D pixel crosstalk and offset crosstalk and applied different approaches based on its characteristics. For 3D pixel crosstalk which depends on the viewer’s relative location, they proposed output pixel value weighting scheme based on viewer’s eye position, and for offset crosstalk they subtracted luminance of crosstalk components according to the measured display crosstalk level in advance. By simulations and experiments using the 3D display prototypes, the authors evaluated the effectiveness of proposed method.


2021 ◽  
Vol 45 (3) ◽  
Author(s):  
C. M. Durnea ◽  
S. Siddiqi ◽  
D. Nazarian ◽  
G. Munneke ◽  
P. M. Sedgwick ◽  
...  

AbstractThe feasibility of rendering three dimensional (3D) pelvic models of vaginal, urethral and paraurethral lesions from 2D MRI has been demonstrated previously. To quantitatively compare 3D models using two different image processing applications: 3D Slicer and OsiriX. Secondary analysis and processing of five MRI scan based image sets from female patients aged 29–43 years old with vaginal or paraurethral lesions. Cross sectional image sets were used to create 3D models of the pelvic structures with 3D Slicer and OsiriX image processing applications. The linear dimensions of the models created using the two different methods were compared using Bland-Altman plots. The comparisons demonstrated good agreement between measurements from the two applications. The two data sets obtained from different image processing methods demonstrated good agreement. Both 3D Slicer and OsiriX can be used interchangeably and produce almost similar results. The clinical role of this investigation modality remains to be further evaluated.


Sign in / Sign up

Export Citation Format

Share Document