3D Texturing of the Water–Air Interface by Biomimetic Self-Assembly

2019 ◽  
Author(s):  
Erik Bergendal ◽  
Richard A. Campbell ◽  
Georgia A. Pilkington ◽  
Peter Müller-Buschbaum ◽  
Mark W. Rutland

A simple, insoluble monolayer of fatty acid is shown to induce 3D nanotexturing of the water–air interface. This advance has been achieved through the study of monolayers of a methyl-branched long chain fatty acid, analogous to those found on the surface of hair and wool, directly at the water–air interface. Specular neutron reflectometry combined with AFM probing of deposited monolayers shows pronounced 3D surface domains, which are absent for unbranched analogues and which are attributed to hydrocarbon packing constraints. The resulting surface topographies of the water far exceed the height perturbation that can be explained by the presence of capillary waves of a free liquid surface. These have hitherto been considered the only source of perturbation of the flatness of a planar water interface under gravity in the absence of topographical features from the presence of extended, globular or particulate matter. This amounts to a paradigm shift in the study of interfacial films and opens the possibility of 3D texturing of the water–air interface.

2019 ◽  
Author(s):  
Erik Bergendal ◽  
Richard A. Campbell ◽  
Georgia A. Pilkington ◽  
Peter Müller-Buschbaum ◽  
Mark W. Rutland

A simple, insoluble monolayer of fatty acid is shown to induce 3D nanotexturing of the water–air interface. This advance has been achieved through the study of monolayers of a methyl-branched long chain fatty acid, analogous to those found on the surface of hair and wool, directly at the water–air interface. Specular neutron reflectometry combined with AFM probing of deposited monolayers shows pronounced 3D surface domains, which are absent for unbranched analogues and which are attributed to hydrocarbon packing constraints. The resulting surface topographies of the water far exceed the height perturbation that can be explained by the presence of capillary waves of a free liquid surface. These have hitherto been considered the only source of perturbation of the flatness of a planar water interface under gravity in the absence of topographical features from the presence of extended, globular or particulate matter. This amounts to a paradigm shift in the study of interfacial films and opens the possibility of 3D texturing of the water–air interface.


Reproduction ◽  
2018 ◽  
Author(s):  
Pacharawan Deenarn ◽  
Punsa Tobwor ◽  
Rungnapa Leelatanawit ◽  
Somjai Wongtriphop ◽  
Jutatip Khudet ◽  
...  

The delay in ovarian maturation in farmed black tiger shrimp Penaeus monodon has resulted in the widespread practice of feeding broodstock with the polychaetes Perinereis nuntia and their unilateral eyestalk ablation. Although this practice alters fatty acid content in shrimp ovaries and hepatopancreas, its effects on fatty acid regulatory genes have yet to be systematically examined. Here, microarray analysis was performed on hepatopancreas and ovary cDNA collected from P. monodon at different ovarian maturation stages, revealing that 72 and 58 genes in fatty acid regulatory pathways were differentially expressed in hepatopancreas and ovaries respectively. Quantitative real-time PCR analysis revealed that ovarian maturation was associated with higher expression levels of acetyl-CoA acetyltransferase, acyl-CoA dehydrogenase, acyl-CoA oxidase 3 and long-chain fatty acid transport protein 4 in hepatopancreas, whereas the expression levels of 15 fatty acid regulatory genes were increased in shrimp ovaries. To distinguish the effects of different treatments, transcriptional changes were examined in P. monodon with stage 1 ovaries before polychaete feeding, after one-month of polychaete feeding and after eyestalk ablation. Polychaete feeding resulted in lower expression levels of enoyl-CoA hydratase and acyl-CoA synthetase medium-chain family member 4, while the expression level of phosphatidylinositide phosphatase SAC1 was higher in shrimp hepatopancreas and ovaries. Additionally, eyestalk ablation resulted in a higher expression level of long-chain fatty acid-CoA ligase 4 in both tissues. Together, our findings describe the dynamics of fatty acid regulatory pathways during crustacean ovarian development and provide potential target genes for alternatives to eyestalk ablation in the future.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4239
Author(s):  
Pezhman Mohammadi ◽  
Fabian Zemke ◽  
Wolfgang Wagermaier ◽  
Markus B. Linder

Macromolecular assembly into complex morphologies and architectural shapes is an area of fundamental research and technological innovation. In this work, we investigate the self-assembly process of recombinantly produced protein inspired by spider silk (spidroin). To elucidate the first steps of the assembly process, we examined highly concentrated and viscous pendant droplets of this protein in air. We show how the protein self-assembles and crystallizes at the water–air interface into a relatively thick and highly elastic skin. Using time-resolved in situ synchrotron X-ray scattering measurements during the drying process, we showed that the skin evolved to contain a high β-sheet amount over time. We also found that β-sheet formation strongly depended on protein concentration and relative humidity. These had a strong influence not only on the amount, but also on the ordering of these structures during the β-sheet formation process. We also showed how the skin around pendant droplets can serve as a reservoir for attaining liquid–liquid phase separation and coacervation from the dilute protein solution. Essentially, this study shows a new assembly route which could be optimized for the synthesis of new materials from a dilute protein solution and determine the properties of the final products.


2000 ◽  
Vol 41 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Karin A. J.M. van der Lee ◽  
Michaël M. Vork ◽  
Johan E. De Vries ◽  
Peter H.M. Willemsen ◽  
Jan F.C. Glatz ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 903
Author(s):  
Jen-Ying Hsu ◽  
Hui-Hsuan Lin ◽  
Charng-Cherng Chyau ◽  
Zhi-Hong Wang ◽  
Jing-Hsien Chen

Saturated fatty acid is one of the important nutrients, but contributes to lipotoxicity in the liver, causing hepatic steatosis. Aqueous pepino leaf extract (AEPL) in the previous study revealed alleviated liver lipid accumulation in metabolic syndrome mice. The study aimed to investigate the mechanism of AEPL on saturated long-chain fatty acid-induced lipotoxicity in HepG2 cells. Moreover, the phytochemical composition of AEPL was identified in the present study. HepG2 cells treated with palmitic acid (PA) were used for exploring the effect of AEPL on lipid accumulation, apoptosis, ER stress, and antioxidant response. The chemical composition of AEPL was analyzed by HPLC-ESI-MS/MS. AEPL treatment reduced PA-induced ROS production and lipid accumulation. Further molecular results revealed that AEPL restored cytochrome c in mitochondria and decreased caspase 3 activity to cease apoptosis. In addition, AEPL in PA-stressed HepG2 cells significantly reduced the ER stress and suppressed SREBP-1 activation for decreasing lipogenesis. For defending PA-induced oxidative stress, AEPL promoted Nrf2 expression and its target genes, SOD1 and GPX3, expressions. The present study suggested that AEPL protected from PA-induced lipotoxicity through reducing ER stress, increasing antioxidant ability, and inhibiting apoptosis. The efficacy of AEPL on lipotoxicity was probably concerned with kaempferol and isorhamnetin derived compounds.


Sign in / Sign up

Export Citation Format

Share Document