Benzothiazole moieties and their derivatives as antimicrobial and antiviral agents: A mini-review

2020 ◽  
Vol 11 (3) ◽  
pp. 3309-3315
Author(s):  
Manahil B Elamin ◽  
Amani Abd Elrazig Salman Abd Elaziz ◽  
Emad Mohamed Abdallah

Heterocyclic chemistry has provided an inexhaustible source of pharmaceutical molecules. Heterocyclic compounds such as benzothiazole moieties and its derivatives area substantial class of compounds in pharmaceutical chemistry and exhibited therapeutic capabilities, such as antitumor, anticancer, antioxidant, antidiabetic, antiviral, antimicrobial, antimalarial, anthelmintic and other activities. Besides, some antibiotics such as penicillin and cephalosporin have heterocyclic moiety. The growing prevalence of multi-drug resistant pathogens represents serious global concern,which requires the development of new antimicrobial drugs. Moreover, the emergence of pandemic SARSCoV-2 causing Covid-19 disease and all these health dilemmas urge the scientific community to examine the possible antimicrobial and antiviral capacities of some bioactive benzothiazole derivatives against these severe causative agents.This mini-review highlights some recent scientific literature on different benzothiazole molecules and their derivatives. It turns out that, there are numerous synthesized benzothiazole derivatives which exhibited different mode of actions against microorganisms or viruses and accordingly suggested them as an active candidate in the discovery of new antimicrobial or antiviral agents for clinical development. The recommended bioactive benzothiazole derivatives mentioned in the current study are mainly Schiff bases, azo dyes and metal complexes benzothiazole derivatives; the starting material for most of these derivatives are 2-aminobenzothiazole although careful pharmaceutical studies should be conducted to ensure the safety and efficacy of these bioactive synthesized molecules as an antimicrobial or antiviral drug in the future.

Life ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Andreza C. Santana ◽  
Ronaldo C. Silva Filho ◽  
José C. J. M. D. S. Menezes ◽  
Diego Allonso ◽  
Vinícius R. Campos

Arboviruses, in general, are a global threat due to their morbidity and mortality, which results in an important social and economic impact. Chikungunya virus (CHIKV), one of the most relevant arbovirus currently known, is a re-emergent virus that causes a disease named chikungunya fever, characterized by a severe arthralgia (joint pains) that can persist for several months or years in some individuals. Until now, no vaccine or specific antiviral drug is commercially available. Nitrogen heterocyclic scaffolds are found in medications, such as aristeromycin, favipiravir, fluorouracil, 6-azauridine, thioguanine, pyrimethamine, among others. New families of natural and synthetic nitrogen analogous compounds are reported to have significant anti-CHIKV effects. In the present work, we focus on these nitrogen-based heterocyclic compounds as an important class with CHIKV antiviral activity. We summarize the present understanding on this class of compounds against CHIKV and also present their possible mechanism of action.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 539
Author(s):  
Klaus Fink ◽  
Andreas Nitsche ◽  
Markus Neumann ◽  
Marica Grossegesse ◽  
Karl-Heinz Eisele ◽  
...  

Since the SARS-CoV-2 pandemic started in late 2019, the search for protective vaccines and for drug treatments has become mandatory to fight the global health emergency. Travel restrictions, social distancing, and face masks are suitable counter measures, but may not bring the pandemic under control because people will inadvertently or at a certain degree of restriction severity or duration become incompliant with the regulations. Even if vaccines are approved, the need for antiviral agents against SARS-CoV-2 will persist. However, unequivocal evidence for efficacy against SARS-CoV-2 has not been demonstrated for any of the repurposed antiviral drugs so far. Amantadine was approved as an antiviral drug against influenza A, and antiviral activity against SARS-CoV-2 has been reasoned by analogy but without data. We tested the efficacy of amantadine in vitro in Vero E6 cells infected with SARS-CoV-2. Indeed, amantadine inhibited SARS-CoV-2 replication in two separate experiments with IC50 concentrations between 83 and 119 µM. Although these IC50 concentrations are above therapeutic amantadine levels after systemic administration, topical administration by inhalation or intranasal instillation may result in sufficient amantadine concentration in the airway epithelium without high systemic exposure. However, further studies in other models are needed to prove this hypothesis.


2003 ◽  
Vol 47 (9) ◽  
pp. 3021-3024 ◽  
Author(s):  
Muriel Macé ◽  
Chaysavanh Manichanh ◽  
Pascale Bonnafous ◽  
Stéphanie Précigout ◽  
David Boutolleau ◽  
...  

ABSTRACT A quantitative real-time PCR assay was developed for the determination of antiviral drug susceptibility and growth kinetics of human herpesvirus 6. The susceptibility and fitness of a sensitive strain, HST, and its ganciclovir-resistant derivative, GCVR1, were then characterized, leading us to conclude that the mutations of this latter virus did not alter its fitness significantly.


2002 ◽  
Vol 83 (8) ◽  
pp. 1887-1896 ◽  
Author(s):  
Nathalie Charlier ◽  
Pieter Leyssen ◽  
Jan Paeshuyse ◽  
Christian Drosten ◽  
Herbert Schmitz ◽  
...  

We have established a convenient animal model for flavivirus encephalitis using Montana Myotis leukoencephalitis virus (MMLV), a bat flavivirus. This virus has the same genomic organization, and contains the same conserved motifs in genes that encode potential antiviral targets, as flaviviruses that cause disease in man (N. Charlier et al., accompanying paper), and has a similar particle size (approximately 40 nm). MMLV replicates well in Vero cells and appears to be equally as sensitive as yellow fever virus and dengue fever virus to a selection of experimental antiviral agents. Cells infected with MMLV show dilation of the endoplasmic reticulum, a characteristic of flavivirus infection. Intraperitoneal, intranasal or direct intracerebral inoculation of SCID mice with MMLV resulted in encephalitis ultimately leading to death, whereas immunocompetent mice were refractory to either intranasal or intraperitoneal infection with MMLV. Viral RNA and/or antigens were detected in the brain and serum of MMLV-infected SCID mice, but not in any other organ examined: MMLV was detected in the olfactory lobes, the cerebral cortex, the limbic structures, the midbrain, cerebellum and medulla oblongata. Infection was confined to neurons. Treatment with the interferon-α/β inducer poly(I)·poly(C) protected SCID mice against MMLV-induced morbidity and mortality, and this protection correlated with a reduction in infectious virus titre and viral RNA load. This validates the MMLV model for use in antiviral drug studies. The MMLV SCID model may, therefore, be attractive for the study of chemoprophylactic or chemotherapeutic strategies against flavivirus infections causing encephalitis.


2020 ◽  
Vol 13 ◽  
pp. 1-28
Author(s):  
Prem Sagar Chapagain ◽  
Tor H. Aase

 The environmental situation of the Hiamlayas is a matter of global concern. Understanding on Himalayas environment is usually shaped by the changing views expressed by research institutions, doner organizations, and finally by politics and power relations. In line with changing paradigms in knowledge-producing institutions, different understandings of environmental challenges in the Himalayas have emerged. Based on the literature and available data, we have tried to discern changes in forest policies, their implication on forest management and various understandings of deforestation in Nepal Himalayas that are salient in the scientific literature. The debate of deforestation/degradation on the state of Himalayan environment came on the global agenda in the 1950s. The initial focus was on population growth and pressure on natural resources. It was followed by attention to processes of development and physical interventions in a fragile environment. Most recently local participation and poverty alleviation have been high on the agenda. In this context, the present paper attempts to examine the debates in the light of recent events and circumstances related to environmental processes in general and forest management of Nepal in particular.


2020 ◽  
Vol 11 (12) ◽  
pp. 1335-1353
Author(s):  
Atukuri Dorababu

The antiviral properties of indole derivatives discovered recently are described considering their inhibitory values, cytotoxicity and SAR studies. The study helps researchers to carry out further investigation and to design efficient antiviral agents.


2009 ◽  
Vol 54 (1) ◽  
pp. 452-459 ◽  
Author(s):  
P. W. Krug ◽  
R. F. Schinazi ◽  
J. K. Hilliard

ABSTRACT B virus infection of humans results in high morbidity and mortality in as many as 80% of identified cases. The main objective of this study was to conduct a comparative analysis of conventional and experimental antiviral drug susceptibilities of B virus isolates from multiple macaque species and zoonotically infected humans. We used a plaque reduction assay to establish the effective inhibitory doses of acyclovir, ganciclovir, and vidarabine, as well as those of a group of experimental nucleoside analogs with known anti-herpes simplex virus activity. Four of the experimental drugs tested were 10- to 100-fold more potent inhibitors of B virus replication than conventional antiviral agents. Drug efficacies were similar for multiple B virus isolates tested, with variations within 2-fold of the median effective concentration (EC50) for each drug, and each EC50 was considerably lower than those for B virus thymidine kinase (TK) mutants. We observed no differences in the viral TK amino acid sequence between B virus isolates from rhesus monkeys and those from human zoonoses. Differences in the TK protein sequence between cynomolgus and pigtail macaque B virus isolates did not affect drug sensitivity except in the case of one compound. Taken together, these data suggest that future B virus zoonoses will respond consistently to conventional antiviral treatment. Further, the considerably higher potency of FEAU (2′-fluoro-5-ethyl-Ara-U) than of conventional antiviral drugs argues for its compassionate use in advanced human B virus infections.


2020 ◽  
Author(s):  
marta Landoni ◽  
Ionio Chiara

Purpose: Intimate Partner Violence (IPV) is an urgent matter, and a global concern for several countries across the world highlighted high numbers and percentages also before the beginning of the Covid-19 pandemic. Further, international states and organizations have claimed an increase in IPV numbers during the COVID-19 pandemic, raising awareness of the potential causes and providing urgent recommendations and guidelines to follow for the containment and possible interventions. Based on these priorities, this review aims to explore and analyze the existing scientific literature on the association and consequences of COVID-19 on Domestic Violence and to sum up the strategies and recommendations for clinicians and health care workers. Methods: The electronic databases of PubMed, Scopus and Science of Direct were searched. Papers published between 2019 and 2020, written in English and having as main focus the domestic violence during the COVID-19 pandemic, were included. Results: At the final stage, 60 articles were included and analyzed. Results pointed three pre-determined categories: the course, the dynamics, the recommendations and an adjunctive category DV and disasters. Conclusions: Since COVID-19 is responsible for a spike in DV cases, it is essential to implement specific and shared assessment strategies and targeted interventions in order to prevent the adverse outcomes of IPV.


2021 ◽  
Vol 22 (17) ◽  
pp. 9427
Author(s):  
Simone Di Micco ◽  
Simona Musella ◽  
Marina Sala ◽  
Maria C. Scala ◽  
Graciela Andrei ◽  
...  

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the pathogen responsible for the outbreak of a severe, rapidly developing pneumonia (Coronavirus disease 2019, COVID-19). The virus enzyme, called 3CLpro or main protease (Mpro), is essential for viral replication, making it a most promising target for antiviral drug development. Recently, we adopted the drug repurposing as appropriate strategy to give fast response to global COVID-19 epidemic, by demonstrating that the zonulin octapeptide inhibitor AT1001 (Larazotide acetate) binds Mpro catalytic domain. Thus, in the present study we tried to investigate the antiviral activity of AT1001, along with five derivatives, by cell-based assays. Our results provide with the identification of AT1001 peptide molecular framework for lead optimization step to develop new generations of antiviral agents of SARS-CoV-2 with an improved biological activity, expanding the chance for success in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document