scholarly journals Implications of Dietary Vegetables on Glycemic Control- A Mechanistic Review

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1130-1139
Author(s):  
Syed Sagheer Ahmed ◽  
Rupesh Kumar M ◽  
Rajesh Kowti ◽  
Ramesh B

The global prevalence of diabetes mellitus is increasing day by day. Despite using synthetic anti-diabetic agents, diabetic patients must modify their lifestyle, including routine diet. Vegetables are the adequate source of vitamins, dietary fibres, minerals and Phytoconstituents. Use of vegetables is growing among the people as a part of the diet. They, with their antioxidant properties, can maintain good health and reduce the risk of chronic diseases. Besides, they contain many dietary fibres that are anti-diabetic. The constituents present in these vegetables help to reduce blood glucose level through several mechanisms such as alpha-amylase and alpha-glucosidase enzyme inhibition, Dipeptidyl peptidase IV (DPP IV) inhibition, enhancing the expression of peroxisome proliferator activator receptor gamma (PPAR) γ and glucose transporter 4 (GLUT4). Therefore the people must consume such vegetables with the proper knowledge to control diabetes mellitus and its complications. Hence the present review focuses on summarizing in vitro and in vivo  anti-diabetic activity of most common dietary vegetables.

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1731
Author(s):  
Caomhán J. Lyons ◽  
Timothy O'Brien

Endothelial-colony-forming cells (ECFCs) are a population of progenitor cells which have demonstrated promising angiogenic potential both in vitro and in vivo. However, ECFCs from diabetic patients have been shown to be dysfunctional compared to ECFCs from healthy donors. Diabetes mellitus itself presents with many vascular co-morbidities and it has been hypothesized that ECFCs may be a potential cell therapy option to promote revascularisation in these disorders. While an allogeneic cell therapy approach would offer the potential of an ‘off the shelf’ therapeutic product, to date little research has been carried out on umbilical cord-ECFCs in diabetic models. Alternatively, autologous cell therapy using peripheral blood-ECFCs allows the development of a personalised therapeutic approach to medicine; however, autologous diabetic ECFCs are dysfunctional and need to be repaired so they can effectively treat diabetic co-morbidities. Many different groups have modified autologous diabetic ECFCs to improve their function using a variety of methods including pre-treatment with different factors or with genetic modification. While the in vitro and in vivo data from the literature is promising, no ECFC therapy has proceeded to clinical trials to date, indicating that more research is needed for a potential ECFC therapy in the future to treat diabetic complications.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5491
Author(s):  
Qamar Uddin Ahmed ◽  
Abdul Hasib Mohd Ali ◽  
Sayeed Mukhtar ◽  
Meshari A. Alsharif ◽  
Humaira Parveen ◽  
...  

In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Serawit Deyno ◽  
Kassahun Eneyew ◽  
Sisay Seyfe ◽  
Elias Wondim

Abstract Background Despite tremendous developments in synthetic medicine, medicinal plants are still commonly used for the management of diabetes mellitus. This study synthesized scientific evidence on commonly used medicinal plants for the management of diabetes mellitus (DM) in Ethiopia. Methods Databases (PubMed, Cochrane, CINAHL and Google Scholar) have been thoroughly sought and evidence was synthesized. Results Thirty studies conducted anti-diabetic activities studies on 19 medicinal plants in Ethiopia. Most of the studies were in vivo studies (25). Others include; clinical study (1), in vitro studies (2), and both in vivo and in vitro study (2). Trigonella foenum-graecum L., clinical study, showed an improved lipid profile in type II diabetic patients. Comparable blood sugar level (BSL) lowering effect to glibenclimide was observed with Persea Americana and Moringa stenopetala. Noteworthy in vitro half maximal inhibitory concentration (IC 50) of Aloe megalacantha B and Aloe monticola R were observed. Animal model studies demonstrated the relative safety of the plants extract and phytochemistry studies showed various components. Conclusion Medicinal plants used for management of diabetes mellitus in Ethiopia are worthy for further study for pharmacologically active ingredients and clinical evaluation.


1977 ◽  
Author(s):  
R. Giustolisi ◽  
R. Musso ◽  
T. Lombardo ◽  
M. Russoand ◽  
E. Cacciola

Some coagulation aspects are studied in diabetes mellitus because this dismetabo-lic disease represents a “high risk factor” of predisposition leading to classical lesions of the vascular wall and thrombosis. Were studied 24 diabetic patients between 16 and 68 years old and 14 healthy subjects. Tests performed are followed: partial thromboplastyn time(PTT), plasma coagulation time RVV(RVV-T), antithrombin III(At-III), alpha2macroglobulin(a2M), fibrin/fibrinogen degradation products(FDP), ethanol gelation(EG) and protamine sulphate(PS), euglobulin lysis time(ELT), platelet adhesiveness to glass(PAG), platelet adhesiveness in vivo (PAV), platelet factor-3 availability(PF-3), platelet aggregation by ristocetin 1, 2-1, 5-1, 8 mg/ml(RIPA),Diabetics showed a fall in At-III, increase a2M, a significant decrease ELT and increase FDP with often positivity EG. We also noted a shortening of PTT, PF-3 rate and RVV-T. In vitro platelets adhesiveness rises more than it does in vivo. Besides the PPP from diabetics increased the control subjects PAG. The RIPA is increased. Our findings showed, therefore, in diabetic patients a thrombophilic pattern by blood hypercoagulability and fibrinolytic activity decreased.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Adriana Machado-Lima ◽  
Erika R Oliveira ◽  
Rodrigo T Iborra ◽  
Gabriela Castilho ◽  
Edna R Nakandakare ◽  
...  

Advanced glycation end products (AGE) are elevated in diabetes mellitus (DM) and predict the development of atherosclerosis. In vitro produced AGE-albumin induces oxidative stress that is linked to the reduction in ABCA-1 levels and cholesterol efflux mediated by apo A-I and HDL-subfractions, leading to macrophage cholesterol accumulation. We characterized the glycation level/profile of human serum albumin (HSA) isolated by fast protein liquid chromatography from poorly controlled type 1 (DM1) and type 2 (DM2) diabetes mellitus patients (HbA1c > 8%) in comparison to control (C) individuals, and how these AGE-albumin can interfere in macrophage lipid accumulation. The glycation level of HSA from C, DM1 and DM2 was analyzed by MALDI mass spectrometry and was similar between DM1 and DM2-HSA. An increased mean mass was observed in DM1-HSA (68,544 ± 192 Da; n=6) and DM2-HSA (68,547 ± 132 Da; n=6) compared to C-HSA (67,846 ± 301 Da; n=6), reflecting the condensation of at least 8 and 5 units of glucose, respectively. The tryptic digestion of C-HSA generated a number of peptide species higher than those originated from DM1 and DM2-HSA. Macrophages isolated from peritoneal wild-type mice were treated for 18 h with C, DM1 or DM2-HSA in order to measure the 14C-cholesterol efflux and the mRNA expression of NOX-4 (NADPHoxidase4), ABCA-1 (Abca1) and ABCG-1 (Abcg1). Data were compared by one-way ANOVA and Dunnet′s post test. In comparison to cells treated with C-HSA the expression of NADPHoxidase4 (p<0.05; n=3) mRNA was increased after cell treatment with DM1 (3.2x) and DM2-HSA (0.7x), confirming oxidative stress. Abcg1 mRNA was reduced by DM2-HSA (26%; p<0.05; n=3); Abca1 mRNA was unchanged but ABCA-1 protein content was greatly reduced (82 and 25%, respectively in DM1 and DM2-HAS; p<0.05; n=12). The % of apo A-I mediated cholesterol efflux was impaired in DM1 (1.3 ± 0.3) and DM2-HSA-treated cells (2.4 ± 0.5) as compared to C-HSA (4.4 ± 0.5; n= 5; p<0.05). The level of advanced glycation that takes place in vivo was similar between DM1 and DM2-HSA and induced macrophage oxidative stress and impairment in cholesterol efflux that may contribute to atherogenesis in DM. Funding: FAPESP, Brazil (2012/19112-0)


2012 ◽  
Vol 58 (6) ◽  
pp. 727-736 ◽  
Author(s):  
V.Z. Lankin ◽  
G.G. Konovalova ◽  
A.K. Tikhaze ◽  
L.V. Nedosugova

Natural dicarbonyls, which may be accumulated during oxidative stress in atherosclerosis (e.g. malondialdehyde) or carbonyl stress in diabetes mellitus (glyoxal and methylglyoxal) effectively inhibited the activities of commercial preparations of antioxidant enzymes: catalase, Cu,Zn-superoxide dismutase (Cu,Zn-SOD) and Se-contained glutathione peroxidase from human and bovine erythrocytes and also rat liver glutathione-S-transferase. After incubation of human erythrocytes with 10 mM of each investigated dicarbonyls the decrease of intracellular Cu,Zn-SOD was observed. The decreased activity of erythrocyte Cu,Zn-SOD was also detected in diabetic patients with carbohydrate metabolism disturbance but effective sugar-lowered therapy was accompanied by the increase of this enzyme activity. The increase of erythrocytes activity of Cu,Zn-SOD of diabetic patients theated with metformin (which may utilize methylglyoxal) was higher than in erythrocytase of diabetic patients subjected to traditional therapy.


2022 ◽  
Vol 12 ◽  
Author(s):  
Norsuhana Omar ◽  
Che Aishah Nazariah Ismail ◽  
Idris Long

Diabetes mellitus and its consequences continue to put a significant demand on medical resources across the world. Diabetic neuropathic pain (DNP) is a frequent diabetes mellitus chronic microvascular outcome. Allodynia, hyperalgesia, and aberrant or lack of nerve fibre sensation are all symptoms of DNP. These clinical characteristics will lead to worse quality of life, sleep disruption, depression, and increased mortality. Although the availability of numerous medications that alleviate the symptoms of DNP, the lack of long-term efficacy and unfavourable side effects highlight the urgent need for novel treatment strategies. This review paper systematically analysed the preclinical research on the treatment of DNP using plant phytochemicals that contain only tannins. A total of 10 original articles involved in in-vivo and in-vitro experiments addressing the promising benefits of phytochemical tannins on DNP were examined between 2008 and 2021. The information given implies that these phytochemicals may have relevant pharmacological effects on DNP symptoms through their antihyperalgesic, anti-inflammatory, and antioxidant properties; however, because of the limited sample size and limitations of the studies conducted so far, we were unable to make definitive conclusions. Before tannins may be employed as therapeutic agents for DNP, more study is needed to establish the specific molecular mechanism for all of these activities along the pain pathway and examine the side effects of tannins in the treatment of DNP.


2015 ◽  
Vol 85 (1-2) ◽  
pp. 88-103 ◽  
Author(s):  
Cromwell Mwiti Kibiti ◽  
Anthony Jide Afolayan

Abstract. Diabetes mellitus is a chronic physiological glucose metabolic disorder. Its high prevalence globally has a significant impact on the quality of life. The management of diabetes includes non-pharmacological and glucose lowering agents. Although these methods are effective, they have drawbacks. This has led to a search for alternative therapy in macro and micro-minerals from dietary foods and plants. There is therefore a need to review, identify and classify their modes of action in diabetes mellitus therapy. Materials and Methods: This review was carried out using comprehensive literature reports on the use of mineral elements in the management of diabetes. Empirical online searches were conducted for different elements that have been studied for their anti-diabetic potentials both in vivo and in vitro. The University of Fort Hare’s online database was also used. Results and Discussion: The results indicate that magnesium, molybdenum, zinc, vanadium and manganese facilitate glucose catabolism. Chromium, vanadium, zinc, molybdenum and magnesium can enhance insulin activity while molybdenum, manganese and zinc stimulate lipogenesis. Zinc and iron can modulate glucose, metabolizing enzymes in the gastrointestinal tract and limit oxidative stress, respectively. These agents have similar mechanisms to conventional drugs in ameliorating diabetic status and other associated complications. Conclusion: The mechanisms of these elements are well known, however, the synergetic effects of their combinations are still obscure. Literature on their safe dose(s) is still scanty. Evaluation of other useful macro and micro-minerals should also be undertaken. It is envisaged that the use of mineral supplements will promote good health in diabetics.


2020 ◽  
Vol 27 (14) ◽  
pp. 2257-2321 ◽  
Author(s):  
Sonia Rocha ◽  
Daniela Ribeiro ◽  
Eduarda Fernandes ◽  
Marisa Freitas

: The use of anti-diabetic drugs has been increasing worldwide and the evolution of therapeutics has been enormous. Still, the currently available anti-diabetic drugs do not present the desired efficacy and are generally associated with serious adverse effects. Thus, entirely new interventions, addressing the underlying etiopathogenesis of type 2 diabetes mellitus, are required. Chalcones, secondary metabolites of terrestrial plants and precursors of the flavonoids biosynthesis, have been used for a long time in traditional medicine due to their wide-range of biological activities, from which the anti-diabetic activity stands out. : This review systematizes the information found in literature about the anti-diabetic properties of chalcones, in vitro and in vivo. Chalcones are able to exert these properties by acting in different therapeutic targets: Dipeptidyl Peptidase 4 (DPP-4); Glucose Transporter Type 4 (GLUT4), Sodium Glucose Cotransporter 2 (SGLT2), α-amylase, α-glucosidase, Aldose Reductase (ALR), Protein Tyrosine Phosphatase 1B (PTP1B), Peroxisome Proliferator-activated Receptor-gamma (PPARγ) and Adenosine Monophosphate (AMP)-activated Protein Kinase (AMPK). Chalcones are, undoubtedly, promising anti-diabetic agents, and some crucial structural features have already been established. From the Structure-Activity Relationships analysis, it can generally be stated that the presence of hydroxyl, prenyl and geranyl groups in their skeleton improves their activity for the evaluated anti-diabetic targets.


1987 ◽  
Vol 57 (02) ◽  
pp. 201-204 ◽  
Author(s):  
P Y Scarabin ◽  
L Strain ◽  
C A Ludlam ◽  
J Jones ◽  
E M Kohner

SummaryDuring the collection of samples for plasma β-thromboglobulin (β-TG) determination, it is well established that artificially high values can be observed due to in-vitro release. To estimate the reliability of a single β-TG measurement, blood samples were collected simultaneously from both arms on two separate occasions in 56 diabetic patients selected for a clinical trial. From each arm, blood was taken into two tubes containing an anticoagulant mixture with (tube A) and without (tube B) PGE!. The overall mean value of B-TG in tube B was 1.14 times higher than in tube A (p <0.01). The markedly large between-arms variation accounted for the most part of within-subject variation in both tubes and was significantly greater in tube B than in tube A. Based on the difference between B-TG values from both arms, the number of subjects with artifically high B-TG values was significantly higher in tube B than in tube A on each occasion (overall rate: 28% and 14% respectively). Estimate of between-occasions variation showed that B-TG levels were relatively stable for each subject between two occasions in each tube. It is concluded that the use of PGEi decreases falsely high B-TG levels, but a single measurement of B-TG does not provide a reliable estimate of the true B-TG value in vivo.


Sign in / Sign up

Export Citation Format

Share Document