scholarly journals Formulation and evaluation of Olmesartan Medoxomil solid dispersions to enhance its solubility and dissolution characteristics

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1515-1525
Author(s):  
Christopher Vimalson D ◽  
Parimalakrishnan S ◽  
Jeganathan N S ◽  
Anbazhagan S

The objective of the present learns to improve solubility and dissolution of Olmesartan Medoxomil (OM) by improving water solubility by reliable dispersion methods using fusion method (FM) and solvent evaporation (SE) method via hydrophilic polymers PEG 6000 and PVP K30 in different ratios.  Preformulation studies of OM: polymers were carried using DSC and FTIR proves that it is stable without any extra peaks, which implies no interaction among the drug and carrier. For OM in FM drug: polymer ratio was maintained in a range 1:1, 1:3, 1:5 and 1:7 w/w ratio of OM to PEG 6000 and  coded as SDOM1, SDOM2, SDOM3 and SDOM4 whereas for SE method OM to PVP K30  ratio was maintained in a range of 1:1, 1:3, 1:5 and 1:7 w/w ratio  and coded as SDOM5, SDOM6, SDOM7 and SDOM8. SDOM3 by FM and SDOM7 by SE method resulted in the highest production yield. The solubility studies have shown improved drug solubility compared with a pure drug in all medium. Percentage of drug content, flowability characters like the angle of repose and carr's index, bulk density, Hausner's, tapped density were within acceptable limits. In vitro drug release in the intestinal gastric medium of pH 1.2 was improved significantly when compared with pure drug. SDOM3 and SDOM7, selected for accelerated stability studies, had no significant change in physical parameters, drug content, with little changes in the in vitro  drug release pattern. Hence solubility and dissolution rate of OM is increased by using the PEG 6000 and PVP K30 polymers. 

Author(s):  
AMRIN SHAIKH ◽  
PRASHANT BHIDE ◽  
REESHWA NACHINOLKAR

Objective: The aim of the present investigation was to design gels for the topical delivery of celecoxib and evaluate with an aim to increase its penetration through the skin and thereby its flux. Method: The solubility of celecoxib is shown to be increased by preparing solid dispersions (SDs) using carriers such as mannitol, polyvinylpyrrolidone (PVP-K30), polyethylene glycol (PEG) 6000 and urea by solvent evaporation, fusion, and coevaporation methods. In vitro release profile of all SD was comparatively evaluated and studied against the pure drug. The prepared SD was subjected for percent practical yield, drug content, infrared spectroscopy, differential scanning calorimetry analysis, X-ray diffraction studies, and scanning electron microscopy (SEM) imaging. The celecoxib gel was prepared using hydroxypropyl methyl cellulose (HPMC) and Carbopol containing a permeation enhancer dimethyl sulfoxide (DMSO) at different proportions and evaluated for drug content, pH, viscosity, spreadability, extrudability, stability, and in vitro drug release. Results: Faster dissolution rate was exhibited by SD containing 1:5 ratio of celecoxib: PVP K-30 prepared by coevaporation method. In vitro drug release of celecoxib, gels revealed that formulation with HPMC has higher drug release as compared to Carbopol. Conclusion: The increase in dissolution rate for SD is observed in the following order of PVP K-30>urea>mannitol>PEG 6000. The CPD5 gel containing a SD CP5 and 20% DMSO showed the best in vitro release 74.13% at the end of 6 h.


Author(s):  
Vijaya Kumar B ◽  
Prasad G ◽  
Ganesh B ◽  
Swathi C ◽  
Rashmi A ◽  
...  

The objective of the present research was to develop a Bilayer tablet of guaifenesin (GBT) using superdisintegrant MCC and sodium starch glycolate for the fast release layer and metalose 90 SH and carbopol 934 for the sustaining layer. The guaifenesin SR granules of different formulation were evaluated for bulk density, tapped density, angle of repose, Carr’s index and Hausners ratio and results were found to be 0.460 ± 0.12 to 0.515 ± 0.03 gm/cm3 , 0.550 ±0.03 to 0.590 ±0.04 gm/cm3 , 19 ±0.01 to 26 ± 0.23, 13.72 ± 0.03 to 19.56 ± 0.04 & 1.137 to 1.196, respectively. The prepared bilayer tablets were evaluated for weight variation, hardness, friability, drug content and in vitro drug release. In vitro dissolution studies were carried out in a USP 24 apparatus I. The formulations gave an initial burst effect to provide the loading dose of the drug followed by sustained release for 12 h from the sustaining layer of matrix embedded tablets. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. Stability studies conducted for optimized formulation did not show any change in physical appearance, drug content, matrix integrity and in vitro drug release. The results of the present study clearly indicated that GBT was a stable dosage form and a promising potential of the guaifenesin bilayer system as an alternative to the conventional dosage forms


2018 ◽  
Vol 10 (4) ◽  
pp. 141 ◽  
Author(s):  
Prashant Bhide ◽  
Reeshwa Nachinolkar

Objective: The aim of the present investigation was to design and evaluate fast dissolving tablet (FDT) for the oral delivery containing solid dispersion of meclizine (MCZ) hydrochloride, an antiemetic drug.Methods: The solubility of meclizine was increased by preparing solid dispersions using mannitol as a carrier by fusion method. The prepared solid dispersion, was subjected for in vitro drug release, percent practical yield, drug content, infrared spectroscopy (IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM). Optimized solid dispersion was incorporated to prepare fast dissolving tablets. Preformulation studies were carried out on tablet blends. The prepared solid dispersion, as well as pure drug fast dissolving tablets, was evaluated for drug content, weight variation, hardness, friability, in vitro drug release, wetting time, disintegration time, water absorption ratio, in vitro dispersion time.Results: Meclizine pure drug, solid dispersions formulations SD1, SD3 and SD5 showed 12.8, 31.68, 38.92 and 53.28% cumulative drug release in phosphate buffer pH 6.8 after 60 min, respectively. Thus faster dissolution rate was exhibited by the solid dispersion containing 1:5 (w/w) ratio of meclizine: mannitol. Percent cumulative drug release for control and solid dispersion tablets after 60 min in phosphate buffer pH 6.8 was 92.04 and 98.2% respectively. The release of drug meclizine from best formulation SD5 FDT was found to be faster than pure drug FDT.Conclusion: Fast dissolving tablet of optimized solid dispersion showed better in vitro dissolution result then FDT of pure drug at the end of one hour.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2180
Author(s):  
Sana Javaid ◽  
Nasir M. Ahmad ◽  
Azhar Mahmood ◽  
Habib Nasir ◽  
Mudassir Iqbal ◽  
...  

The objective of the present study was to achieve the successful encapsulation of a therapeutic agent to achieve antifouling functionality regarding biomedical applications. Considering nanotechnology, drug-loaded polycaprolactone (PCL)-based nanoparticles were prepared using a nano-precipitation technique by optimizing various process parameters. The resultant nano-formulations were investigated for in vitro drug release and antifouling applications. The prepared particles were characterized in terms of surface morphology and surface properties. Optimized blank and drug-loaded nanoparticles had an average size of 200 nm and 216 nm, respectively, with associated charges of −16.8 mV and −11.2 mV. Studies of the in vitro release of drug were carried out, which showed sustained release at two different pH, 5.5 and 7.4 Antifouling activity was observed against two bacterial strains, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The zone of inhibition of the optimized polymeric drug-loaded nanoparticle F-25 against both strains were compared with the pure drug. The gradual pH-responsive release of antibiotics from the biodegradable polymeric nanoparticles could significantly increase the efficiency and pharmacokinetics of the drug as compared to the pure drug. The acquired data significantly noted that the resultant nano-encapsulation of antifouling functionality could be a promising candidate for topical drug delivery systems and skin applications.


INDIAN DRUGS ◽  
2012 ◽  
Vol 49 (12) ◽  
pp. 29-35
Author(s):  
N.G.N Swamy ◽  
◽  
P Shilpa ◽  
Z. Abbas

Chewing gums are mobile drug delivery systems, with a potential for administering drugs either for local action or for systemic absorption via buccal route. Dextromethorphan hydrobromide chewing gum formulations were made employing Pharmagum M as the base with an aim to overcome the firstpass effect, reducing the risk of overdosing, ease of administration and for achieving faster systemic absorption. Dextromethorphan hydrobromide was further transformed into spray dried form and incorporated into Pharmagum M base with the object of solubility enhancement and masking the bitter taste of the drug. The prepared medicated chewing gums were evaluated for various precompression and postcompression parameters. The in vitro drug release profiles were carried out employing Erweka DRT chewing apparatus. It was observed that increasing the chewing gum base concentration resulted in a decreased drug release profile. The drug in the spray dried form revealed improved performance in comparison to the directly contained drug. The drug release data were fitted into various kinetic models. It was observed that the drug release was matrix diffusion controlled and revealed a non-Fickian drug release mechanism. Accelerated stability studies were carried out on select formulations as per ICH guidelines. The formulations were found to be stable in respect to physical parameters and no significant deviations were seen in respect to in vitro drug release characteristics.


1970 ◽  
Vol 1 (3) ◽  
pp. 43-49 ◽  
Author(s):  
Jovita Kanoujia ◽  
Kanchan Sonker ◽  
Manisha Pandey ◽  
Koshy M Kymonil ◽  
Shubhini A Saraf

The present research work deals with the formulation and evaluation of in-situ gelling system based on sol-to-gel transition for ophthalmic delivery of an antibacterial agent gatifloxacin, to overcome the problems of poor bioavailability and therapeutic response exhibited by conventional formulations based a sol-to-gel transition in the cul-de-sac upon instillation. Carbopol 940 was used as the gelling agent in combination with HPMC and HPMC K15M which acted as a viscosity enhancing agent. The prepared formulations were evaluated for pH, clarity, drug content, gelling capacity, bioadhesive strength and in-vitro drug release. In-vitro drug release data of optimized formulation (F12) was treated according to Zero, First, Korsmeyer Peppas and Higuchi kinetics to access the mechanism of drug release. The clarity, pH, viscosity and drug content of the developed formulations were found in range 6.0-6.8, 10-570cps, 82-98% respectively. The gel provided sustained drug release over an 8 hour period. The developed formulation can be used as an in-situ gelling vehicle to enhance ocular bioavailability and the reduction in the frequency of instillation thereby resulting in better patient compliance. Key Words: In-situ gelation; Gatifloxacin; Carbopol 940; HPMC K15M. DOI: http://dx.doi.org/10.3329/icpj.v1i3.9661 International Current Pharmaceutical Journal 2012, 1(3): 43-49


2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 27-35
Author(s):  
A. A Bakliwal ◽  
◽  
D. S. Jat ◽  
S. G. Talele ◽  
A. G. Jadhav

The objective of the present study was to produce extended release nateglinide nanosponges for oral delivery. Preparation of nanosponges leads to solubility enhancement. Nateglinide is a BCS Class II drug, having low solubility. So, to increase the solubility of nateglinide it is formulated into nanosponges. Nanosponges using ethyl cellulose as a polymer and dichloromethane as a cross-linker were prepared successfully by ultra-sound assisted synthesis method. The effects of different drug: placebo ratios on the physical characteristics of the nanosponges as well as the drug content and in vitro drug release of the nanosponges were investigated. Particle size analysis and surface morphology of nanosponges were performed. The scanning and transmission electron microscopy of nanosponges showed that they were spongy in nature. The particle size was found to be in the range 46.37 - 97.23 nm out of which particle size of the optimized formulation was 51.79 nm and the drug content was found to 79.43 %. The optimized nanosponge formulations were selected for preparing nanosponge tablets for extended drug delivery by oral route. These tablets were prepared using xanthan gum and PVP K-30 and were evaluated by pre-compression and post-compression parameters. The nateglinide nanosponges tablet formulation were studied for different parameters using Design Expert Software. All formulations were evaluated for in vitro drug release analyzed according to various release kinetic models and it was found that it follows zero order release kinetics.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (07) ◽  
pp. 52-57

The aim of this research was to develop mucoadhesive buccal patches of nicergoline by using Factorial Design of Experiment, in order to provide a sustained release of drug into the systemic circulation. A 33 factorial experimental design was employed for optimization and to study the effect of formulation variables on responses R1 (% swelling index), R2 (% drug content), R3 (mucoadhesion time) and R4 (mucoadhesion strength). In vitro drug release study was performed on the optimized formulations. All the prepared formulations had good mechanical strength, mucoadhesion strength, neutral surface pH and drug content up to 98.17%. In vitro drug release study revealed that F-5 formulation showed promising sustained drug release profile (98.21%) for over 8 h and could be a potential substitute for marketed conventional formulations. The developed formulation (F5) was found to be optimized with considerably good stability and extended drug release profile.


Sign in / Sign up

Export Citation Format

Share Document