scholarly journals ANALYSIS OF METHODS FOR STUDYING THE SIZE OF NANOPARTICLES

Author(s):  
Григорий Иосифович Свердлик ◽  
Анжела Юрьевна Атаева ◽  
Амонд Рафаэлович Атаев ◽  
Елена Александровна Хадзарагова ◽  
Людмила Тотразовна Вазиева

В представленной работе рассмотрены методы определения размеров наночастиц различными способами. Определен эффективный метод нахождения возможных вариантов. Содержатся сведения о многообразии этих методов и о приёмах их реализации. Выбрана и проанализирована информация по различным методам и исследованиям. Рассмотрены принципиально отличающиеся методы нахождения размеров наночастиц. Одними из перспективных методов являются бесконтактные (оптические). Подвергнуты анализу и приведены диапазоны крупности исследуемых частиц при использовании методов: оптической микроскопии, электронной микроскопии, сканирующей зондовой микроскопии. Описаны принципы работы и возможные схемы установок для изучения исследуемого материала. Более подробно освещен седиментационный метод с применением центрифугирования и рентгеновского принципа детекции. Отмечены его преимущества перед другими методами. Приведены примеры его использования на экспериментальной установке, позволяющей получать дифференциальные и интегральные характеристики в различных базисах, которые позволяют анализировать распределение частиц по крупности при гранулометрическом исследовании материалов, включая наноматериалы. In the presented work, various methods for determining the size of nanoparticles are considered. An effective method for finding possible options has been determined. Information on various methods and studies was selected and analyzed. Fundamentally different methods for finding the sizes of nanoparticles are considered. Non-contact (optical) methods are the most promising. The particle size ranges of the investigated particles are analyzed and presented using the next methods: optical microscopy, electron microscopy, scanning probe microscopy. The principles of operation and possible schemes of installations for studying the material under study are described. The sedimentation method, using centrifugation and the X-ray principle of detection, is described in more detail. Its advantages over other methods are noted. Examples are given of its use in an experimental setup that allows obtaining differential and integral characteristics in various bases, which make it possible to analyze the particle size distribution in the granulometric study of materials, including nanomaterials.

2012 ◽  
Vol 562-564 ◽  
pp. 269-272
Author(s):  
Fa Feng Xia ◽  
Chun Hua Ma ◽  
Yi Fang Yin ◽  
Liang Miao

Nanocomposite Ni–TiN coatings were prepared by ultrasonic pluse electrodeposition and the effects of ultrasonication on the coatings were studied. X-Ray diffraction analysis was utilized to detect the crystalline and amorphous characteristics of the composite coatings. The surface morphology and metallurgical structure were observed by scanning electron microscopy, high-resolution transmission electron microscopy and scanning probe microscopy. The results show that ultrasonication has great effects on TiN nanoparticles in composite coatings. Moreover, the introduction of ultrasonication and TiN particles led to the formation of smaller nickel grains. The average grain diameter of TiN particles was 33 nm, while Ni grains measured approximately 53 nm.


2017 ◽  
Vol 50 ◽  
pp. 18-31 ◽  
Author(s):  
Rudzani Sigwadi ◽  
Simon Dhlamini ◽  
Touhami Mokrani ◽  
Patrick Nonjola

The paper presents the synthesis and investigation of zirconium oxide (ZrO2) nanoparticles that were synthesised by precipitation method with the effects of the temperatures of reaction on the particles size, morphology, crystallite sizes and stability at high temperature. The reaction temperature effect on the particle size, morphology, crystallite sizes and stabilized a higher temperature (tetragonal and cubic) phases was studied. Thermal decomposition, band structure and functional groups were analyzed by Brunauer-Emmett-Teller (BET), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Thermo-gravimetric analysis (TGA) and Fourier transform infrared (FT-IR). The crystal structure was determined using X-ray diffraction. The morphology and the particle size were studied using (SEM) and (TEM). The shaped particles were confirmed through the SEM analysis. The transmission electron microscopic analysis confirmed the formation of the nanoparticles with the particle size. The FT-IR spectra showed the strong presence of ZrO2 nanoparticles.


2003 ◽  
Vol 18 (9) ◽  
pp. 2050-2054 ◽  
Author(s):  
Marcello Gombos ◽  
Vicente Gomis ◽  
Anna Esther Carrillo ◽  
Antonio Vecchione ◽  
Sandro Pace ◽  
...  

In this work, we report on the observation of Nd1Ba6Cu3O10,5 (Nd163) phase of the NdBaCuO system in melt-textured Nd123 bulk samples grown from a mixture of Nd123 and Nd210 phase powders. The observation was performed with polarized light optical microscopy and scanning electron microscopy–energy dispersive x-ray analyses. Images of the identified phase crystals show an aspect quite different from Nd422 crystals. Unexpectedly, Nd163 was individuated, even in “pure” Nd123 samples. Moreover, after long exposure to air, Nd163 disappeared completely in samples synthesized from powders containing Nd210. Thermogravimetry analyses of powders show that the stability of this phase in air is limited to temperatures higher than 900 °C, so Nd163 is unstable and highly reactive at room temperature. Moreover, an explanation of the observation of Nd163 in Nd210 free samples, based on the spontaneous formation of Nd163 phase in a Nd123 melt, is proposed.


Author(s):  
V.Yu. Fokina ◽  
E.А. Kizima ◽  
I.V. Miheev ◽  
A.I. Ivankov ◽  
V.M. Garamus

Two types of fullerene C60 water dispersions were investigated by a small-angle X-ray and neutron scattering. As a result, structural parameters of fullerene aggregates were obtained. The water dispersions were obtained by the solvent-exchange technique and by huge dilution of initial C60/Nmethylpyrrolidone solution. The structure organization of water dispersions is considered in respect to their technique preparation. It was shown that fullerene aggregates were characterized by highly polydispersity in size for all dispersions. In the case of son/nC60 dispersion it was found that fullerenes formed aggregates with a dense nucleus (namely a surface fractal) with a radius of 58 ± 1 nm and a fractal dimension of 2.3. In turn, the nmp/nC60 system was characterized by the branched aggregates with fractal dimension 1.5 and bimodal particle size distribution.


2021 ◽  
Author(s):  
Maame Croffie ◽  
Paul N. Williams ◽  
Owen Fenton ◽  
Anna Fenelon ◽  
Karen Daly

<p>Soil texture is an essential factor for effective land management in agricultural production. Knowledge of soil texture and particle size at field scale can aid with on-going soil management decisions. Standard soil physical and gravimetric methods for particle size analysis are time-consuming and X-ray fluorescence spectrometry (XRF) provides a rapid and cost-effective alternative. The objective of this study was to explore the use of XRF as a predictor for particle size. An extensive archive of Irish soils with particle size and soil texture data was used to select samples for XRF analysis. Regression and correlation analyses on XRF determined results showed that the relationship between Rb and % clay varied with soil type and was dependent on the parent material. There was a strong relationship (R > 0.62, R<sup>2</sup>>0.30, p<0.05) between Rb and clay for soils originating from bedrock such as limestones and slate. Contrastingly, no significant relationship (R<0.03, R<sup>2</sup>=0.00, p>0.05) exists between Rb and % clay for soils originating from granite and gneiss. Furthermore, there was a significant negative correlation (p<0.05) between Rb and % sand. The XRF is a useful technique for rough screening of particle size distribution in soils originating from certain parent materials. Thus, this may contribute to the rapid prediction of soil texture based on knowledge of the particle size distribution.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document