scholarly journals Increase in high-lift devices efficiency of swept wing

2020 ◽  
Vol 23 (6) ◽  
pp. 101-120
Author(s):  
Yu. S. Mikhailov

The use of Fowler flaps and slotted slats in sweptwing aircraft is the standard solution to increase wing lift at take off and landing. In the literature this solution is known as a classical option of high-lift system of commercial subsonic aircraft. The results of numerical and experimental studies of some solutions intended to increase the efficiency of classical high-lift devices are presented. The concept of the trailing-edge devices called "the adaptive flap" is considered as a way to improve flap efficiency. The adaptive concept is characterized by the integration of spoiler downward deflection to the Fowler flap function. Integration of the spoiler with a movable flap provided an increase of lift in the linear region due to flaps deflected to a higher angle. The steeper upwash angle at a leading-edge device may be the reason of an early stall of the main wing. To protect the leading edge a slotted Kruger flap with streamline form has been used. Preliminary design of classical and improved high-lift systems included the determination of aerodynamic shapes and the optimized position for the high-lift devices. Aerodynamic analysis and design were carried out using 2D RANS Navier-Stokes method. A comparison of computed results has shown visible aerodynamic advantages of an improved high-lift system for maximum lift coefficient and refining the behavior of stall characteristics at high angles of attack. The results of wind tunnel tests of aircraft model with adaptive flap showed its effectiveness.

2021 ◽  
Vol 11 (6) ◽  
pp. 2752
Author(s):  
Conchin Contell Asins ◽  
Volker Landersheim ◽  
Dominik Laveuve ◽  
Seiji Adachi ◽  
Michael May ◽  
...  

In order to contribute to achieving noise and emission reduction goals, Fraunhofer and Airbus deal with the development of a morphing leading edge (MLE) as a high lift device for aircraft. Within the European research program “Clean Sky 2”, a morphing leading edge with gapless chord- and camber-increase for high-lift performance was developed. The MLE is able to morph into two different aerofoils—one for cruise and one for take-off/landing, the latter increasing lift and stall angle over the former. The shape flexibility is realised by a carbon fibre reinforced plastic (CFRP) skin optimised for bending and a sliding contact at the bottom. The material is selected in terms of type, thickness, and lay-up including ply-wise fibre orientation based on numerical simulation and material tests. The MLE is driven by an internal electromechanical actuation system. Load introduction into the skin is realised by span-wise stringers, which require specific stiffness and thermal expansion properties for this task. To avoid the penetration of a bird into the front spar of the wing in case of bird strike, a bird strike protection structure is proposed and analysed. In this paper, the designed MLE including aerodynamic properties, composite skin structure, actuation system, and bird strike behaviour is described and analysed.


2018 ◽  
Vol 15 (143) ◽  
pp. 20170933 ◽  
Author(s):  
T. Jardin ◽  
T. Colonius

Lentink & Dickinson (2009 J. Exp. Biol. 212 , 2705–2719. ( doi:10.1242/jeb.022269 )) showed that rotational acceleration stabilized the leading-edge vortex on revolving, low aspect ratio (AR) wings and hypothesized that a Rossby number of around 3, which is achieved during each half-stroke for a variety of hovering insects, seeds and birds, represents a convergent high-lift solution across a range of scales in nature. Subsequent work has verified that, in particular, the Coriolis acceleration plays a key role in LEV stabilization. Implicit in these results is that there exists an optimal AR for wings revolving about their root, because it is otherwise unclear why, apart from possible morphological reasons, the convergent solution would not occur for an even lower Rossby number. We perform direct numerical simulations of the flow past revolving wings where we vary the AR and Rossby numbers independently by displacing the wing root from the axis of rotation. We show that the optimal lift coefficient represents a compromise between competing trends with competing time scales where the coefficient of lift increases monotonically with AR, holding Rossby number constant, but decreases monotonically with Rossby number, when holding AR constant. For wings revolving about their root, this favours wings of AR between 3 and 4.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
V. G. Chapin ◽  
E. Benard

The active control of the leading-edge (LE) separation on the suction surface of a stalled airfoil (NACA 0012) at a Reynolds number of 106 based on the chord length is investigated through a computational study. The actuator is a steady or unsteady jet located on the suction surface of the airfoil. Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations are solved on hybrid meshes with the Spalart–Allmaras turbulence model. Simulations are used to characterize the effects of the steady and unsteady actuation on the separated flows for a large range of angle of attack (0 < α < 28 deg). Parametric studies are carried out in the actuator design-space to investigate the control effectiveness and robustness. An optimal actuator position, angle, and frequency for the stalled angle of attack α = 19 deg are found. A significant increase of the lift coefficient is obtained (+ 84% with respect to the uncontrolled reference flow), and the stall is delayed from angle of attack of 18 deg to more than 25 deg. The physical nonlinear coupling between the actuator position, velocity angle, and frequency is investigated. The critical influence of the actuator location relative to the separation location is emphasized.


2021 ◽  
Author(s):  
Chen Li ◽  
Peiting Sun ◽  
Hongming Wang

The leading-edge bulges along the extension direction are designed on the marine wingsail. The height and the spanwise wavelength of the protuberances are 0.1c and 0.25c, respectively. At Reynolds number Re=5×105, the Reynolds Averaged Navier-Stokes equations are applied to the simulation of the wingsail with the bulges thanks to ANSYS Fluent finite-volume solver based on the SST K-ω models. The grid independence analysis is carried out with the lift and drag coefficients of the wingsail at AOA = 8° and AOA=20°. The results show that while the efficiency of the wingsail is reduced by devising the leading-edge bulges before stall, the bulges help to improve the lift coefficient of the wingsail when stalling. At AOA=22° under the action of the leading-edge tubercles, a convective vortex is formed on the suction surface of the modified wingsail, which reduces the flow loss. So the bulges of the wingsail can delay the stall.


Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 31 ◽  
Author(s):  
Andrea Magrini ◽  
Ernesto Benini ◽  
Rita Ponza ◽  
Chen Wang ◽  
Hamed Khodaparast ◽  
...  

In the context of ambitious targets for reducing environmental impact in the aviation sector, dictated by international institutions, morphing aircraft are expected to have potential for achieving the required efficiency increases. However, there are still open issues related to the design and implementation of deformable structures. In this paper, we compare three constrained parameterisation strategies for the aerodynamic design of a morphing leading edge, representing a potential substitute for traditional high-lift systems. In order to facilitate the structural design and promote the feasibility of solutions, we solve a multi-objective optimisation problem, including constraints on axial and bending strain introduced by morphing. A parameterisation method, inherently producing constant arc length curves, is employed in three variants, representing different morphing strategies which provide an increasing level of deformability, by allowing the lower edge of the flexible skin to slide and the gap formed with the fixed spar to be closed by a hatch. The results for the optimisation of a baseline airfoil show that the geometric constraints are effectively handled in the optimisation and the solutions are smooth, with a continuous variation along the Pareto frontier. The larger shape modification allowed by more flexible parameterisation variants enables an increase of the maximum lift coefficient up to 8.35%, and efficiency at 70% of stall incidence up to 4.26%.


Author(s):  
Ravon Venters ◽  
Brian Helenbrook

The cross-sectional geometry of a diffuser-augmented wind turbine (DAWT) is often that of a cambered airfoil oriented at an angle of attack such that the lift coefficient of the airfoil is maximal. Beyond this angle separation occurs, and the performance decreases. Thus, predicting this transition is important for creating an optimally designed diffuser. The focus of this work is to validate two numerical methods for predicting the onset of separation for highly cambered airfoils. The numerical models investigated are a Reynolds-averaged-Navier-Stokes (RANS) k–ε model and XFOIL. The results were compared to each other and to experimental data. Overall the most accurate model was the k–ε model. Using this model, an optimization of a 2D DAWT was performed which determined the optimal placement of the diffuser. This optimization showed that the optimal angle of attack for the diffuser is much greater than what one would expect based on the maximum lift angle of an airfoil in a free-stream.


2014 ◽  
Vol 540 ◽  
pp. 138-142 ◽  
Author(s):  
Yong Hong Li ◽  
Yong Huang ◽  
Ji Chuan Su

Previous wind tunnel study has found that the lift slope of a common research model with flying-wing configuration in a transonic freestream can experience a sudden drop as the angle of attack is increased. A numerical investigation of aerodynamic characteristics of the flying-wing configuration in transonic speed flow is presented with the intend to examine the changes of the flow characteristics in detail. As can been seen from the analysis, at sufficiently high angles of attack the dominant feature of flows over the leeside of the configuration is a pair of counter-rotating vortices. Solving the steady Reynolds-Averaged Navier-Stokes equations , the flow structures were exhibited in different angles and the analysis of total pressure, static pressure and axial velocity through wing vortex cores were presented in order to analyze the flow characteristics for the develop of the vortex. The investigation shows that the numerical method is accurate enough to capture the features of the flow especially the formation and breakdown of the leading-edge vortices. The rapid expansion of the vortex core and adverse pressure gradient the flow encounters in the chordwise direction affect the aerodynamic performance severely.


2021 ◽  
Vol 16 (1) ◽  
pp. 44-52
Author(s):  
Vasilii L. Kocharin ◽  
Nikolai V. Semionov ◽  
Alexander D. Kosinov ◽  
Aleksey A. Yatskikh ◽  
Sofia A. Shipul ◽  
...  

Experimental studies of the influence of unit Reynolds number on the laminar-turbulent transition in a supersonic boundary layer of a swept wing with a subsonic leading edge at Mach number 2 are performed. The experiments were performed on a model of a swept wing with a swept angle of the leading edge of 72 degrees and with a 3% profile with a variable chord length in span. The hot-wire measurements showed that a laminar-turbulent transition in a supersonic boundary layer of a swept wing with a subsonic leading edge occurs earlier (~25-30%) than on a model with a supersonic leading edge with the same oncoming flow parameters. It is shown that a change unit Reynolds number insignificant influence the laminar-turbulent transition in the boundary layer of a swept wing with a subsonic leading edge.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 40 ◽  
Author(s):  
Dajun Liu ◽  
Takafumi Nishino

A series of three-dimensional unsteady Reynolds-averaged Navier–Stokes (RANS) simulations are conducted to investigate the formation of stall cells over a pitching NACA 0012 aerofoil. Periodic boundary conditions are applied to the spanwise ends of the computational domain. Several different pitching ranges and frequencies are adopted. The influence of the pitching range and frequency on the lift coefficient (CL) hysteresis loop and the development of leading-edge vortex (LEV) agrees with earlier studies in the literature. Depending on pitching range and frequency, the flow structures on the suction side of the aerofoil can be categorized into three types: (i) strong oscillatory stall cells resembling what are often observed on a static aerofoil; (ii) weak stall cells which are smaller in size and less oscillatory; and (iii) no stall cells at all (i.e., flow remains two-dimensional) or only very weak oval-shaped structures that have little impact on CL. A clear difference in CL during the flow reattachment stage is observed between the cases with strong stall cells and with weak stall cells. For the cases with strong stall cells, arch-shaped flow structures are observed above the aerofoil. They resemble the Π-shaped vortices often observed over a pitching finite aspect ratio wing.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Robert Kulhánek ◽  
Zdeněk Pátek ◽  
Petr Vrchota ◽  
Pavel Procházka ◽  
Vaclav Uruba

Purpose Some recent effort showed that usage of Krueger flaps helps to maintain laminar flow in cruise flight. Such flaps are positioned higher relative to the chord to shield the leading edge from the insect contamination during take-off. The flap passes several through critical intermediate position during the deployment to its design position. The purpose of this paper is to analyse the aerodynamics. Design/methodology/approach To better understand such flow phenomena, the combined approach of computational fluid dynamics and experimental methods were used. Flow simulation was performed with in-house finite volume Navier–Stokes solver in fully turbulent unsteady RANS regime. The experimental data were obtained by means of force and pressure measurements and some areas of the flow field were examined with 2 C particle image velocimetry. Findings The airfoil with flap in critical position has a very limited maximum lift coefficient. The maximum achievable lift coefficient during the deployment is significantly affected by the vertical position of the trailing edge of the flap. The most unfavourable position during the deployment is not the flap perpendicular to the chord, but the flap inclined closer to it is the retracted position. Research limitations/implications The flap movement was not simulated either in the simulation or in the experiment. Only intermediate static positions were examined. Practical implications A better understanding of aerodynamic phenomena connected with the deployment of a Krueger flap can contribute to the simpler and lighter of kinematics and also to decrease time-to-market. Originality/value Limited experimental and computational results of Krueger flap in critical positions during the deployment are published in the literature.


Sign in / Sign up

Export Citation Format

Share Document