scholarly journals Comparison of Constrained Parameterisation Strategies for Aerodynamic Optimisation of Morphing Leading Edge Airfoil

Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 31 ◽  
Author(s):  
Andrea Magrini ◽  
Ernesto Benini ◽  
Rita Ponza ◽  
Chen Wang ◽  
Hamed Khodaparast ◽  
...  

In the context of ambitious targets for reducing environmental impact in the aviation sector, dictated by international institutions, morphing aircraft are expected to have potential for achieving the required efficiency increases. However, there are still open issues related to the design and implementation of deformable structures. In this paper, we compare three constrained parameterisation strategies for the aerodynamic design of a morphing leading edge, representing a potential substitute for traditional high-lift systems. In order to facilitate the structural design and promote the feasibility of solutions, we solve a multi-objective optimisation problem, including constraints on axial and bending strain introduced by morphing. A parameterisation method, inherently producing constant arc length curves, is employed in three variants, representing different morphing strategies which provide an increasing level of deformability, by allowing the lower edge of the flexible skin to slide and the gap formed with the fixed spar to be closed by a hatch. The results for the optimisation of a baseline airfoil show that the geometric constraints are effectively handled in the optimisation and the solutions are smooth, with a continuous variation along the Pareto frontier. The larger shape modification allowed by more flexible parameterisation variants enables an increase of the maximum lift coefficient up to 8.35%, and efficiency at 70% of stall incidence up to 4.26%.

2018 ◽  
Vol 15 (143) ◽  
pp. 20170933 ◽  
Author(s):  
T. Jardin ◽  
T. Colonius

Lentink & Dickinson (2009 J. Exp. Biol. 212 , 2705–2719. ( doi:10.1242/jeb.022269 )) showed that rotational acceleration stabilized the leading-edge vortex on revolving, low aspect ratio (AR) wings and hypothesized that a Rossby number of around 3, which is achieved during each half-stroke for a variety of hovering insects, seeds and birds, represents a convergent high-lift solution across a range of scales in nature. Subsequent work has verified that, in particular, the Coriolis acceleration plays a key role in LEV stabilization. Implicit in these results is that there exists an optimal AR for wings revolving about their root, because it is otherwise unclear why, apart from possible morphological reasons, the convergent solution would not occur for an even lower Rossby number. We perform direct numerical simulations of the flow past revolving wings where we vary the AR and Rossby numbers independently by displacing the wing root from the axis of rotation. We show that the optimal lift coefficient represents a compromise between competing trends with competing time scales where the coefficient of lift increases monotonically with AR, holding Rossby number constant, but decreases monotonically with Rossby number, when holding AR constant. For wings revolving about their root, this favours wings of AR between 3 and 4.


2020 ◽  
Vol 23 (6) ◽  
pp. 101-120
Author(s):  
Yu. S. Mikhailov

The use of Fowler flaps and slotted slats in sweptwing aircraft is the standard solution to increase wing lift at take off and landing. In the literature this solution is known as a classical option of high-lift system of commercial subsonic aircraft. The results of numerical and experimental studies of some solutions intended to increase the efficiency of classical high-lift devices are presented. The concept of the trailing-edge devices called "the adaptive flap" is considered as a way to improve flap efficiency. The adaptive concept is characterized by the integration of spoiler downward deflection to the Fowler flap function. Integration of the spoiler with a movable flap provided an increase of lift in the linear region due to flaps deflected to a higher angle. The steeper upwash angle at a leading-edge device may be the reason of an early stall of the main wing. To protect the leading edge a slotted Kruger flap with streamline form has been used. Preliminary design of classical and improved high-lift systems included the determination of aerodynamic shapes and the optimized position for the high-lift devices. Aerodynamic analysis and design were carried out using 2D RANS Navier-Stokes method. A comparison of computed results has shown visible aerodynamic advantages of an improved high-lift system for maximum lift coefficient and refining the behavior of stall characteristics at high angles of attack. The results of wind tunnel tests of aircraft model with adaptive flap showed its effectiveness.


2013 ◽  
Vol 461 ◽  
pp. 220-229
Author(s):  
Chang Jiang Ge ◽  
Mei Chen Ge

To avoid broadband noise from a slat cove, the deployed slat contour is usually modified by filling cove, but the design is sensitive to aerodynamic performance. In the paper, a bionic slat without a cove is built on the basis of a bionic airfoil (i.e. stowed bionic multi-element airfoil), which is extracted from a long-eared owl wing. The quasi-two-dimensional models with a deployed bionic slat and a stowed bionic slat are manufactured by rapid manufacturing and prototyping system, respectively, and measured in a low-turbulence wind tunnel. The results are used to characterize high-lift effect: the lift coefficients of the model with a stowed slat are larger at less than 4°angle of attack, but the model with a deployed slat has the larger lift coefficients at greater than 4°angle of attack. Furthermore, the deployed bionic slat can increase stall angle and maximum lift coefficient, but also delay the decline of the lift coefficient curve slope meaning that the leading-edge separation is postponed within a certain range of angle of attack. At the same time, the flow field around the models is visualized by smoke wire method. The leading-edge separation of the model with a stowed slat is shown at low Reynolds number and angle of attack. However, the finding does not occur in the flow field of the model with a deployed slat at the same conditions, probably because the gap between the bionic slat and the main wing results in favorable pressure gradient, the deployed bionic slat decreases the peak of adverse pressure gradient by increasing the chord of the bionic multi-element model, and the bionic slat wake excites transition to the boundary layer on upper surface of the main wing. This superiority may be used as reference in the design of the leading-edge slat without a cove.


Aviation ◽  
2020 ◽  
Vol 24 (3) ◽  
pp. 123-136
Author(s):  
Swamy Naidu Venkata Neigapula ◽  
Satya Prasad Maddula ◽  
Vasishta Bhargava Nukala

Aerodynamic performance of aircraft wings vary with flight path conditions and depend on efficiency of high lift systems. In this work, a study on high lift devices and mechanisms that aim to increase maximum lift coefficient and reduce drag on commercial aircraft wings is discussed. Typically, such extensions are provided to main airfoil along span wise direction of wing and can increase lift coefficient by more than 100% during operation. Increasing the no of trailing edge flaps in chord wise direction could result in 100% increment in lift coefficient at a given angle of attack but leading edge slats improve lift by delaying the flow separation near stall angle of attack. Different combinations of trailing edge flaps used by Airbus, Boeing and McDonnel Douglas manufacturers are explained along with kinematic mechanisms to deploy them. The surface pressure distribution for 30P30N airfoil is evaluated using 2D vortex panel method and effects of chord wise boundary layer flow transitions on aerodynamic lift generation is discussed. The results showed better agreements with experiment data for high Reynolds number (9 million) flow conditions near stall angle of attack.


Author(s):  
Martin Radestock ◽  
Johannes Riemenschneider ◽  
Alexander Falken ◽  
Johannes Achleitner

Abstract Commercial aircraft today require efficient high-lift and control systems on the wings to reduce the drag in flight or decrease the take-off and landing speeds. Morphing mechanisms are one approach for improved high-lift systems. In most cases the objective function is an increased lift to drag ratio or the noise reduction. On closer examination control systems as well as morphing mechanisms are located in a certain wing segment. The transition between a moving wing part and the fixed wing is a step, which creates additional vortices. This segments the wing in span-wise direction and reduces the efficiency. A flexible skin between a moving and a fixed wing parts smooths the contour and minimize the efficiency reduction of the wing. A full scale demonstrator of a wing segment was manufactured with two flexible skin designs. The first subcomponent connects a morphing leading edge with a rib of the wing over a span of one meter. The skin is a material mix of ethylene-propylene-diene monomer (EPDM) rubber and fiberglass-reinforced plastic. The rubber is the basis of the skin and the glass-fiber is added as local skin stiffeners in the form of strips in chord-wise direction. The second subcomponent blends the aileron with a rib of the wing in a triangular design. The connection of three different hinges realizes a morphing triangle, which is loaded in an in-plane shear only state of stress in each aileron position. The core of the triangle is a 3D printed structure, which is free in shear. The covering skin is a combination of EPDM with carbon fibers oriented in +/−30° direction to obtain shear compliance and to resist the loads on the triangle. The deformation of each concept is identified at the demonstrator. Therefore, an optical measurement system scans the surface in the initial and deflected state. The required deformation precision of the concepts differs due to their design. The contour at the leading edge requires a certain shape over the span. The analysis of the skin buckling is one requirement at the transition triangle during the aileron motion. The experimental results show a smooth transition contour at the leading edge and no buckling effects at the triangle. The results can be used for the validation of simulation models. Furthermore, both skin concepts cover the gap between a moving wing segment and a fixed wing part. The elimination of steps in span-wise direction can improve the aero-acoustic behavior along the wing for future aircraft.


2014 ◽  
Vol 670-671 ◽  
pp. 700-704
Author(s):  
Hong Yan Zhao ◽  
Peng Fei Zhang ◽  
Yun Ma

The flight mechanism of flapping-wing was studied by using the translation-rotation model. We established the flapping-coordinate of the wing, gave the equation of the motion, and simplified the flapping-wing model. The aerodynamic and vortices were simulated by the CFD software of Fluent. The leading-edge vortex generated in the translation phase, and delayed stall mechanism had an important effect on the high lift. In the rotation phase, lift peaks appear due to the wing rapidly rotating and rotational circulation mechanism. The aerodynamics were obtained in different amplitudes, frequencies, angles of attack, the locations of rotating axis and timings of rotation. The influence of these parameters on average lift coefficient is obvious, while it can be ignored to average drag coefficient. Keywords: wing, aerodynamics, vortices, numerical simulation.


2021 ◽  
Vol 11 (6) ◽  
pp. 2752
Author(s):  
Conchin Contell Asins ◽  
Volker Landersheim ◽  
Dominik Laveuve ◽  
Seiji Adachi ◽  
Michael May ◽  
...  

In order to contribute to achieving noise and emission reduction goals, Fraunhofer and Airbus deal with the development of a morphing leading edge (MLE) as a high lift device for aircraft. Within the European research program “Clean Sky 2”, a morphing leading edge with gapless chord- and camber-increase for high-lift performance was developed. The MLE is able to morph into two different aerofoils—one for cruise and one for take-off/landing, the latter increasing lift and stall angle over the former. The shape flexibility is realised by a carbon fibre reinforced plastic (CFRP) skin optimised for bending and a sliding contact at the bottom. The material is selected in terms of type, thickness, and lay-up including ply-wise fibre orientation based on numerical simulation and material tests. The MLE is driven by an internal electromechanical actuation system. Load introduction into the skin is realised by span-wise stringers, which require specific stiffness and thermal expansion properties for this task. To avoid the penetration of a bird into the front spar of the wing in case of bird strike, a bird strike protection structure is proposed and analysed. In this paper, the designed MLE including aerodynamic properties, composite skin structure, actuation system, and bird strike behaviour is described and analysed.


2021 ◽  
pp. 0309524X2110071
Author(s):  
Usman Butt ◽  
Shafqat Hussain ◽  
Stephan Schacht ◽  
Uwe Ritschel

Experimental investigations of wind turbine blades having NACA airfoils 0021 and 4412 with and without tubercles on the leading edge have been performed in a wind tunnel. It was found that the lift coefficient of the airfoil 0021 with tubercles was higher at Re = 1.2×105 and 1.69×105 in post critical region (at higher angle of attach) than airfoils without tubercles but this difference relatively diminished at higher Reynolds numbers and beyond indicating that there is no effect on the lift coefficients of airfoils with tubercles at higher Reynolds numbers whereas drag coefficient remains unchanged. It is noted that at Re = 1.69×105, the lift coefficient of airfoil without tubercles drops from 0.96 to 0.42 as the angle of attack increases from 15° to 20° which is about 56% and the corresponding values of lift coefficient for airfoil with tubercles are 0.86 and 0.7 at respective angles with18% drop.


2016 ◽  
Vol 800 ◽  
pp. 72-110 ◽  
Author(s):  
Richard Semaan ◽  
Pradeep Kumar ◽  
Marco Burnazzi ◽  
Gilles Tissot ◽  
Laurent Cordier ◽  
...  

We propose a hierarchy of low-dimensional proper orthogonal decomposition (POD) models for the transient and post-transient flow around a high-lift airfoil with unsteady Coanda blowing over the trailing edge. The modal expansion comprises actuation modes as a lifting method for wall actuation following Graham et al. (Intl J. Numer. Meth. Engng, vol. 44 (7), 1999, pp. 945–972) and Kasnakoğlu et al. (Intl J. Control, vol. 81 (9), 2008, pp. 1475–1492). A novel element is separate actuation modes for different frequencies. The structure of the dynamic model rests on a Galerkin projection using the Navier–Stokes equations, simplifying mean-field considerations, and a stochastic term representing the background turbulence. The model parameters are identified with a data assimilation (4D-Var) method. We propose a model hierarchy from a linear oscillator explaining the suppression of vortex shedding by blowing to a fully nonlinear model resolving unactuated and actuated transients with steady and high-frequency modulation of blowing. The models’ accuracy is assessed through the mode amplitudes and an estimator for the lift coefficient. The robustness of the model is physically justified, and then observed for the training and the validation dataset.


Sign in / Sign up

Export Citation Format

Share Document