scholarly journals Set4 regulates stress response genes and coordinates histone deacetylases within yeast subtelomeres

2021 ◽  
Vol 4 (12) ◽  
pp. e202101126
Author(s):  
Yogita Jethmalani ◽  
Khoa Tran ◽  
Maraki Y Negesse ◽  
Winny Sun ◽  
Mark Ramos ◽  
...  

The yeast chromatin protein Set4 is a member of the Set3-subfamily of SET domain proteins which play critical roles in the regulation of gene expression in diverse developmental and environmental contexts. We previously reported that Set4 promotes survival during oxidative stress and regulates expression of stress response genes via stress-dependent chromatin localization. In this study, global gene expression analysis and investigation of histone modification status identified a role for Set4 in maintaining gene repressive mechanisms within yeast subtelomeres under both normal and stress conditions. We show that Set4 works in a partially overlapping pathway to the SIR complex and the histone deacetylase Rpd3 to maintain proper levels of histone acetylation and expression of stress response genes encoded in subtelomeres. This role for Set4 is particularly critical for cells under hypoxic conditions, where the loss of Set4 decreases cell fitness and cell wall integrity. These findings uncover a new regulator of subtelomeric chromatin that is key to stress defense pathways and demonstrate a function for Set4 in regulating repressive, heterochromatin-like environments.

2021 ◽  
Author(s):  
Yogita Jethmalani ◽  
Khoa Tran ◽  
Deepika Jaiswal ◽  
Meagan Jezek ◽  
Mark Ramos ◽  
...  

The yeast chromatin protein Set4 is a member of the Set3-subfamily of SET domain proteins which play critical roles in the regulation of gene expression in diverse developmental and environmental contexts, although they appear to lack methyltransferase activity. The molecular functions of Set4 are relatively unexplored, likely due to its low abundance in standard growth conditions. We previously reported that Set4 promotes survival during oxidative stress and regulates expression of stress response genes via stress-dependent chromatin localization. In this study, global gene expression analysis and investigation of histone modification status has revealed a role for Set4 in maintaining gene repressive mechanisms within yeast subtelomeres under both normal and stress conditions. We show that Set4 works in a partially overlapping pathway to the SIR complex and the histone deacetylase Rpd3 to maintain proper levels of histone acetylation and expression of stress response genes encoded in subtelomeres. This role for Set4 is particularly critical for cells under hypoxic conditions, and the loss of Set4 decreases cell fitness and cell wall integrity in hypoxia. These findings uncover a new regulator of subtelomeric chromatin that is key to stress defense pathways and demonstrate a function for yeast Set4 in regulating repressive, heterochromatin-like environments.


2004 ◽  
Vol 15 (2) ◽  
pp. 851-860 ◽  
Author(s):  
Adam Watson ◽  
Juan Mata ◽  
Jürg Bähler ◽  
Anthony Carr ◽  
Tim Humphrey

A coordinated transcriptional response to DNA-damaging agents is required to maintain genome stability. We have examined the global gene expression responses of the fission yeast Schizosaccharomyces pombe to ionizing radiation (IR) by using DNA microarrays. We identified ∼200 genes whose transcript levels were significantly altered at least twofold in response to 500 Gy of gamma IR in a temporally defined manner. The majority of induced genes were core environmental stress response genes, whereas the remaining genes define a transcriptional response to DNA damage in fission yeast. Surprisingly, few DNA repair and checkpoint genes were transcriptionally modulated in response to IR. We define a role for the stress-activated mitogen-activated protein kinase Sty1/Spc1 and the DNA damage checkpoint kinase Rad3 in regulating core environmental stress response genes and IR-specific response genes, both independently and in concert. These findings suggest a complex network of regulatory pathways coordinate gene expression responses to IR in eukaryotes.


2007 ◽  
Vol 75 (12) ◽  
pp. 5640-5650 ◽  
Author(s):  
Sean Y. Kassim ◽  
Sina A. Gharib ◽  
Brigham H. Mecham ◽  
Timothy P. Birkland ◽  
William C. Parks ◽  
...  

ABSTRACT Airway epithelium is the initial point of host-pathogen interaction in Pseudomonas aeruginosa infection, an important pathogen in cystic fibrosis and nosocomial pneumonia. We used global gene expression analysis to determine airway epithelial transcriptional responses dependent on matrilysin (matrix metalloproteinase 7 [MMP-7]) and stromelysin-2 (MMP-10), two MMPs induced by acute P. aeruginosa pulmonary infection. Extraction of differential gene expression (EDGE) analysis of gene expression changes in P. aeruginosa-infected organotypic tracheal epithelial cell cultures from wild-type, Mmp7 −/−, and Mmp10 −/− mice identified 2,091 matrilysin-dependent and 1,628 stromelysin-2-dependent genes that were differentially expressed. Key node network analysis showed that these MMPs controlled distinct gene expression programs involved in proliferation, cell death, immune responses, and signal transduction, among other host defense processes. Our results demonstrate discrete roles for these MMPs in regulating epithelial responses to Pseudomonas infection and show that a global genomics strategy can be used to assess MMP function.


Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 46 ◽  
Author(s):  
Yi-Sheng Sun ◽  
Zhang-Nv Yang ◽  
Fang Xu ◽  
Chen Chen ◽  
Hang-Jing Lu ◽  
...  

Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) are the two most important pathogens of hand, foot, and mouth disease (HFMD). However, the neuropathogenesis of EV71 and CVA16 has not been elucidated. In our previous study, we established gerbils as a useful model for both EV71 and CVA16 infection. In this work, we used RNA-seq technology to analyze the global gene expression of the brainstem of EV71- and CVA16-infected gerbils. We found that 3434 genes were upregulated while 916 genes were downregulated in EV71-infected gerbils. In CVA16-infected gerbils, 1039 genes were upregulated, and 299 genes were downregulated. We also found significant dysregulation of cytokines, such as IP-10 and CXCL9, in the brainstem of gerbils. The expression levels of 10 of the most upregulated genes were confirmed by real-time RT-PCR, and the upregulated tendency of most genes was in accordance with the differential gene expression (DGE) results. Our work provided global gene expression analysis of virus-infected gerbils and laid a solid foundation for elucidating the neuropathogenesis mechanisms of EV71 and CVA16.


Sign in / Sign up

Export Citation Format

Share Document