Silver Nanoparticle-Mediated Cellular Responses in Human Keratinocyte Cell Line HaCaT in Vitro

2019 ◽  
Vol 2 (2) ◽  
pp. 1-9 ◽  
Author(s):  
Khaled Habas ◽  
Lijun Shang

The interactions between cells and nanoparticles has been the focus of recent research in the area. The effects of AgNPs on skin cell lines for further potential biological applications are highlighted. This study aimed to investigate the mechanism of cytotoxic and genotoxic effects of AgNPs nanoparticles on human skin keratinocytes (HaCaT). Genocytotoxic effects of AgNPs was assessed using changes in various cellular parameters of HaCaT cells involving viability, superoxide anion radical production, lactate dehydrogenase release and the levels of the antioxidant enzymes, namely, Catalase, Glutathione peroxidase (GPX) and Superoxide Dismutase (SOD). Superoxide anion was detected using nitroblue tetrazolium NBT reduction assay. LDH levels was evaluated using the standard kit, and activity of antioxidant enzymes such as catalase (CAT), glutathione peroxidase 1 (GPX-1) and superoxide dismutase 1 (SOD-1) were quantified using qPCR. Our results indicated that AgNPs caused severe HaCaT oxidative damage, accompanied by increased the production of superoxide anion levels as well as significant decrease in endogenous antioxidant enzyme of SOD, CAT, GPX expression involved in HaCat cells in vitro. Our study suggests that AgNPs exposure increased oxidative stress levels. Moreover; the low cytotoxic effect observed on human HaCaT keratinocytes suggested that these nano-compounds have a potential toxic effect at the skin level only after long-term exposure.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
José Gutiérrez-Salinas ◽  
Liliana García-Ortíz ◽  
José A. Morales González ◽  
Sergio Hernández-Rodríguez ◽  
Sotero Ramírez-García ◽  
...  

The aim of this paper was to describe the in vitro effect of sodium fluoride (NaF) on the specific activity of the major erythrocyte antioxidant enzymes, as well as on the membrane malondialdehyde concentration, as indicators of oxidative stress. For this purpose, human erythrocytes were incubated with NaF (0, 7, 28, 56, and 100 μg/mL) or NaF (100 μg/mL) + vitamin E (1, 2.5, 5 and 10 μg/mL). The malondialdehyde (MDA) concentration on the surface of the erythrocytes was determined, as were the enzymatic activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GlPx). Our results demonstrated that erythrocytes incubated with increasing NaF concentrations had an increased MDA concentration, along with decreased activity of antioxidant enzymes. The presence of vitamin E partially reversed the toxic effects of NaF on erythrocytes. These findings suggest that NaF induces oxidative stress in erythrocytes in vitro, and this stress is partially reversed by the presence of vitamin E.


Zygote ◽  
2019 ◽  
Vol 27 (6) ◽  
pp. 432-435
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Gabriela Esteves Duarte ◽  
José Antonio Visintin ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummaryLong-term heat stress (HS) induced by testicular insulation generates oxidative stress (OS) on the testicular environment; consequently activating antioxidant enzymes such as superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx). The aim of this work was to immunolocalize antioxidant enzymes present in different cells within the seminiferous tubule when rams were submitted to HS. Rams were divided into control (n = 6) and treated group (n = 6), comprising rams subjected to testicular insulation for 240 h. After the testicular insulation period, rams were subjected to orchiectomy. Testicular fragments were submitted to immunohistochemistry for staining against SOD, GR and GPx enzymes. We observed immunolocalization of GPx in more cell types of the testis after HS and when compared with other enzymes. In conclusion, GPx is the main antioxidant enzyme identified in testicular cells in an attempt to maintain oxidative balance when HS occurs.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


2003 ◽  
Vol 284 (1) ◽  
pp. H277-H282 ◽  
Author(s):  
Steven P. Jones ◽  
Michaela R. Hoffmeyer ◽  
Brent R. Sharp ◽  
Ye-Shih Ho ◽  
David J. Lefer

Reactive oxygen species induce myocardial damage after ischemia and reperfusion in experimental animal models. Numerous studies have investigated the deleterious effects of ischemia-reperfusion (I/R)-induced oxidant production using various pharmacological interventions. More recently, in vitro studies have incorporated gene-targeted mice to decipher the role of antioxidant enzymes in myocardial reperfusion injury. We examined the role of cellular antioxidant enzymes in the pathogenesis of myocardial I/R (MI/R) injury in vivo in gene-targeted mice. Neither deficiency nor overexpression of Cu-Zn superoxide dismutase (SOD) altered the extent of myocardial necrosis. Overexpression of glutathione peroxidase did not affect the degree of myocardial injury. Conversely, overexpression of manganese (Mn)SOD significantly attenuated myocardial necrosis after MI/R. Transthoracic echocardiography was performed on MnSOD-overexpressing and wild-type mice that were subjected to a more prolonged period of reperfusion. Cardiac output was significantly depressed in the nontransgenic but not the transgenic MnSOD-treated mice. Anterior wall motion was significantly impaired in the nontransgenic mice. These findings demonstrate an important role for MnSOD but not Cu/ZnSOD or glutathione peroxidase in mice after in vivo MI/R.


2012 ◽  
Vol 59 (4) ◽  
Author(s):  
Joanna Katarzyna Strzelczyk ◽  
Tomasz Wielkoszyński ◽  
Łukasz Krakowczyk ◽  
Brygida Adamek ◽  
Marzena Zalewska-Ziob ◽  
...  

Oxidative stress is one of several factors which contribute to the development of colorectal carcinogenesis. The aim of the study was an assessment of the activity of antioxidant enzymes in tumour and corresponding normal distal mucosa in a group of patients with colorectal adenocarcinoma. Samples of tumour and corresponding normal mucosa were obtained during a resection of colorectal cancer from 47 patients aged between 26 and 82 years. The average distance of corresponding normal distal mucosa from the tumour was 4.49 cm. Activities of antioxidant enzymes: superoxide dismutase (SOD), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione S-transferase (GST), and catalase (CAT) were measured in tissue homogenates. The patients were grouped according to the tumour stage (Duke's staging), grading, localization, and size of tumour, as well as age and sex. Statistical analysis was performed. The activity of SOD and GPx was considerably increased, while the activity of GST decreased significantly in tumour as compared with normal mucosa. GR activity in colorectal cancer was evidently higher in tumours of proximal location compared with the distal ones. The distance of corresponding normal distal mucosa from the tumour was analyzed and related to all assayed parameters. A decreased GST activity was observed in corresponding normal mucosa more than 5 cm distant from the tumour in patients with CD Duke's stage. The higher activity of superoxide dismutase and glutathione peroxidase in tumour compared to corresponding normal mucosa could indicate higher oxidative stress in colorectal adenocarcinoma cells.


2012 ◽  
Vol 3 (1) ◽  
pp. 18-21 ◽  
Author(s):  
KMK Masthan ◽  
Tajinder Kaur Saggu ◽  
Mahesh Pundaleek Dudanakar ◽  
Shams UI Nisa

ABSTRACT Background Cigarette smoke contains various oxygen-free radicals which are considered as the main causes of damage to biomolecules when exposed to cigarette smoke. Saliva is the first biological fluid that encounters inhaled cigarette smoke (CS) and has an antioxidant defense system able to counter toxic activities of free radical species. So, the aim of this study was to compare the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in saliva of smokers and nonsmokers. Materials and methods Unstimulated saliva of 200 males (100 smokers and 100 nonsmokers) was collected. The saliva was centrifuged and the activity of salivary superoxide dismutase and glutathione peroxidase was measured according to a specific assay. Results The mean value of superoxide dismutase activity was significantly higher in the smoking group than in the nonsmoker group, while the levels of GSH-Px activity was significantly higher in the nonsmoking group than in the smoking group. Conclusion Cigarette smoke leads to an alteration in salivary antioxidant activity. Evaluating the variations in the level of antioxidant enzymes (SOD and GSH-Px) in smoker's saliva might be useful for estimating the level of oxidative stress caused by cigarette smoke. Thus, it may help in patient's education regarding the ill-effects of smoking and determining the evolution and progress of various oral diseases. How to cite this article Saggu TK, Masthan KMK, Dudanakar MP, Nisa SUI, Patil S. Evaluation of Salivary Antioxidant Enzymes among Smokers and Nonsmokers. World J Dent 2012;3(1):18-21.


1990 ◽  
Vol 69 (1) ◽  
pp. 328-335 ◽  
Author(s):  
A. L. Harabin ◽  
J. C. Braisted ◽  
E. T. Flynn

Rats and guinea pigs were exposed to O2 at 2.8 ATA (HBO) delivered either continuously or intermittently (repeated cycles of 10 min of 100% O2 followed by 2.5 min of air). The O2 time required to produce convulsions and death was increased significantly in both species by intermittency. To determine whether changes in brain and lung superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSHPx) correlated with the observed tolerance, enzyme activities were measured after short or long HBO exposures. For each exposure duration, one group received continuous and one intermittent HBO; O2 times were matched. HBO had marked effects on these enzymes: lung SOD increased (guinea pigs 47%, rats 88%) and CAT and GSHPx activities decreased (33%) in brain and lung. No differences were seen in lung GSHPx or brain CAT in rats or brain SOD in either species. In guinea pigs, but less so in rats, the observed changes in activity were usually modulated by intermittency. Increases in hematocrit, organ protein, and lung DNA, which may also reflect ongoing oxidative damage, were also slowed with intermittency in guinea pigs. Intermittency benefited both species by postponing gross symptoms of toxicity, but its modulation of changes in enzyme activities and other biochemical variables was more pronounced in guinea pigs than in rats, suggesting that there are additional mechanisms for tolerance.


Marine Drugs ◽  
2020 ◽  
Vol 18 (9) ◽  
pp. 462
Author(s):  
Xiaoxia Jiang ◽  
Zhexin Ren ◽  
Biying Zhao ◽  
Shuyao Zhou ◽  
Xiaoguo Ying ◽  
...  

Cyclophosphamide (CTX) is a widely used anticancer drug with severe nephrotoxicity. The pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) has been shown to affect immunity and to protect the liver. Hence, the purpose of this study was to investigate the ameliorating effect of SCSP on CTX-induced nephrotoxicity in mice. We injected male ICR mice with CTX (80 mg/kg·day) and measured the nephrotoxicity indices, levels of antioxidant enzymes, malondialdehyde (MDA), inflammatory factors, as well as the major proteins of the NF-κB and apoptotic pathways. Cyclophosphamide induced kidney injury; the levels of kidney-injury indicators and cytokines recovered remarkably in mice after receiving SCSP. The activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) increased, while there was a significant decrease in MDA levels. The kidney tissue damage induced by CTX was also repaired to a certain extent. In addition, SCSP significantly inhibited inflammatory factors and apoptosis by regulating the NF-κB and apoptotic pathways. Our study shows that SCSP has the potential to ameliorate CTX-induced nephrotoxicity and may be used as a therapeutic adjuvant to ameliorate CTX-induced nephrotoxicity.


1997 ◽  
Vol 17 (5) ◽  
pp. 455-466 ◽  
Author(s):  
Jinn-Yang Chen ◽  
An-Hang Yang ◽  
Yao-Ping Lin ◽  
Jen-Kou Lin ◽  
Wu-Chang Yang ◽  
...  

Objective To investigate the modulation of superoxide dismutase, glutathione peroxidase, and catalase by cytokines and endotoxin in human peritoneal mesothelial cells. Design Cultured human peritoneal mesothelial cells were treated with various concentrations of interleu kin-1 α, tumor necrosis factor-α(TNFα), interleukin-6, interleukin-8, transforming growth factor-β (TGFβ), and lipopolysaccharide. Cell morphology was observed and the activities of superoxide dismutase, catalase, and glutathione peroxidase were assayed. The antioxidant enzyme activities of human peritoneal mesothelial cells were also compared with those of human liver and kidney tissues. Results Interleukin-1α, TNFα, TGFβ, and lipopolysaccharide caused dose-dependent cytotoxicities in mesothelial cells. The activities of these three antioxidant enzymes did not change after treatment with cytokines and endotoxin. The total superoxide dismutase activity of confluent human peritoneal mesothelial cells was found to be greater than that of human liver and kidney tissues and was composed mostly of manganese superoxide dismutase activity. Furthermore, glutathione peroxidase and catalase activities of human peritoneal mesothelial cells were lower than those of human liver and kidney tissues. Conclusion In human peritoneal mesothelial cells, lack of induction of antioxidant enzymes by inflammatory cytokines, as well as high superoxide dismutase activity accompanied by insufficient glutathione peroxidase and catalase activities may both contribute to the susceptibility of these cells to oxidative damage. Therefore, appropriate management to decrease oxidative injury to the peritoneum should be taken into consideration when treating long-term continuous ambulatory peritoneal dialysis patients.


Sign in / Sign up

Export Citation Format

Share Document