scholarly journals Thunbergia laurifolia Linn. Extract Protects Ethanol Addiction and Increases Dopamine Synthesis

2021 ◽  
Vol 5 (1) ◽  
pp. 53-61
2020 ◽  
Vol 18 (10) ◽  
pp. 758-768 ◽  
Author(s):  
Khadga Raj ◽  
Pooja Chawla ◽  
Shamsher Singh

: Tramadol is a synthetic analog of codeine used to treat pain of moderate to severe intensity and is reported to have neurotoxic potential. At therapeutic dose, tramadol does not cause major side effects in comparison to other opioid analgesics, and is useful for the management of neurological problems like anxiety and depression. Long term utilization of tramadol is associated with various neurological disorders like seizures, serotonin syndrome, Alzheimer’s disease and Parkinson’s disease. Tramadol produces seizures through inhibition of nitric oxide, serotonin reuptake and inhibitory effects on GABA receptors. Extensive tramadol intake alters redox balance through elevating lipid peroxidation and free radical leading to neurotoxicity and produces neurobehavioral deficits. During Alzheimer’s disease progression, low level of intracellular signalling molecules like cGMP, cAMP, PKC and PKA affect both learning and memory. Pharmacologically tramadol produces actions similar to Selective Serotonin Reuptake Inhibitors (SSRIs), increasing the concentration of serotonin, which causes serotonin syndrome. In addition, tramadol also inhibits GABAA receptors in the CNS has been evidenced to interfere with dopamine synthesis and release, responsible for motor symptoms. The reduced level of dopamine may produce bradykinesia and tremors which are chief motor abnormalities in Parkinson’s Disease (PD).


2020 ◽  
Vol 41 (05) ◽  
pp. 243-244
Author(s):  
Josef Burri ◽  
Bernhard Uehleke

Author(s):  
Gemma Modinos ◽  
Anja Richter ◽  
Alice Egerton ◽  
Ilaria Bonoldi ◽  
Matilda Azis ◽  
...  

AbstractPreclinical models propose that increased hippocampal activity drives subcortical dopaminergic dysfunction and leads to psychosis-like symptoms and behaviors. Here, we used multimodal neuroimaging to examine the relationship between hippocampal regional cerebral blood flow (rCBF) and striatal dopamine synthesis capacity in people at clinical high risk (CHR) for psychosis and investigated its association with subsequent clinical and functional outcomes. Ninety-five participants (67 CHR and 28 healthy controls) underwent arterial spin labeling MRI and 18F-DOPA PET imaging at baseline. CHR participants were followed up for a median of 15 months to determine functional outcomes with the global assessment of function (GAF) scale and clinical outcomes using the comprehensive assessment of at-risk mental states (CAARMS). CHR participants with poor functional outcomes (follow-up GAF < 65, n = 25) showed higher rCBF in the right hippocampus compared to CHRs with good functional outcomes (GAF ≥ 65, n = 25) (pfwe = 0.026). The relationship between rCBF in this right hippocampal region and striatal dopamine synthesis capacity was also significantly different between groups (pfwe = 0.035); the association was negative in CHR with poor outcomes (pfwe = 0.012), but non-significant in CHR with good outcomes. Furthermore, the correlation between right hippocampal rCBF and striatal dopamine function predicted a longitudinal increase in the severity of positive psychotic symptoms within the total CHR group (p = 0.041). There were no differences in rCBF, dopamine, or their associations in the total CHR group relative to controls. These findings indicate that altered interactions between the hippocampus and the subcortical dopamine system are implicated in the pathophysiology of adverse outcomes in the CHR state.


2021 ◽  
Vol 10 (9) ◽  
pp. 1807
Author(s):  
Lee Wei Lim ◽  
Luca Aquili

Increasing evidence, particularly from animal studies, suggests that dopamine and GABA are important modulators of cognitive flexibility. In humans, increasing dopamine synthesis through its precursor tyrosine has been shown to result in performance improvements, but few studies have reported the effects of GABA supplementation in healthy participants. We conducted a double-blind, placebo-controlled, randomized experiment to test the interactive effects of tyrosine and GABA administration on two measures of cognitive flexibility, response inhibition and task switching. A total of 48 healthy volunteers were split into four groups (placebo, tyrosine alone, GABA alone, and tyrosine and GABA combined). They completed cognitive flexibility tasks at baseline and after drug administration. We found that tyrosine alone had no impact on the measures of cognitive flexibility, whereas GABA alone and in combination with tyrosine worsened task switching. Our results provide preliminary evidence that putative increases in GABA and dopamine synthesis do not interact to affect cognitive flexibility performance.


Sign in / Sign up

Export Citation Format

Share Document