scholarly journals Possibilities for Experimental Testing of Alarm Transmission Systems

Author(s):  
Martin Boros ◽  
Matej Kucera ◽  
Andrej Velas ◽  
Jan Valouch

In the current digital era, information is a basis of some systems. In the area of information, great emphasis is also placed on its security and possibilities of use. The basis of the alarm transmission system is information about the protected object, which is transmitted to the remote center of the alarm transmission system. Operators of alarm transmission system centers should be obliged to carry out regular testing of the availability of individual transmission networks. At present, there is a trend that those tests are carried out by telephone calls between the two technicians and the time of transmission of information is measured utilizing a stopwatch. To automate this process, a test facility has been created that can simulate and record the intrusion of a protected object. Initial experimental tests have ascertained whether it is possible, with the test equipment, to generate the data necessary to assess the reliability of alarm transmission systems.

2019 ◽  
Vol 8 (3) ◽  
pp. 4101-4111

swelling soils exist in many developing urban regions in egypt. Most of these urban regions have new huge developments under constructions. The structures constructed on these swelling soils may be exposed to high damage if any significant change in the moisture content of these swelling soils occures, so the presence of such swelling soils represents a significant hazard. Investigation the behaviour of these swelling soils as well as determination of their swelling parameters has become highly necessary. In this paper, intensive experimental testing program has been conducted on some soil samples collected from some of these regions to determine their swelling parameters. Through this experimental testing program, oedometer swell test has been firstly conducted on same soil with two different techniques; namely different pressure method and huder-amberg method. The procedures and obtained results of the two used methods are discussed and compared showing advantages and shortages of each method. After that, all subsequent experimental tests were perfomred using huderamberg method as it demonstrated high superiority in determining swelling parameters. Grob’s 1d swelling law was applied to all obtained experimental results to give exact and complete determination for all swelling parameters. Furthermore, swelling soil has been simulated numerically via the new userdefined swelling constitutive model which has been recently implemented for the finite element software plaxis. The suitability of this model to simulate the performance of swelling soil is verified by conducting a numerical simulation to one of the huder-amberg oedometer tests through the oedometer soil test facility available in plaxis software. Finally, based on the aboveselected experimental approach, swelling parameters were determined from the experimental tests conducted on different soil samples collected from some selected arid/semi-arid regions in egypt. Such test results were summarized and presented as a useful key-parameters of these swelling soils which can be used as pre-determined inputs in any further numerical analyses.


2014 ◽  
Vol 601 ◽  
pp. 231-234
Author(s):  
Cristian Lucian Ghindea ◽  
Dan Cretu ◽  
Monica Popescu ◽  
Radu Cruciat ◽  
Elena Tulei

As a general trend, in order to reduce material consumption or to reduce the mass of the structures, composite floor slabs solutions are used to achieve large spans floor slabs. This solutions led to floors sensitive to vibrations induced generally by human activities. As a verification of the design concepts of the composite floors, usually, it is recommended a further examination of the floor after completion by experimental tests. Although the experimental values of the dynamic response of the floor are uniquely determined, the processing can take two directions of evaluation. The first direction consist in determining the dynamic characteristics of the floor and their comparison with the design values. Another way that can be followed in the processing of the experimental results is to consider the human perception and comfort to the vibration on floors. The paper aims to present a case study on a composite floor, with steel beams and concrete slab, tested on-site. Both aspects of data processing are analyzed, in terms of the structural element, and in terms of the effect on human perception and comfort. Experimentally obtained values for the dynamic characteristics of the floor are compared with numerical values from finite element analysis, while the second type of characteristic values are compared with various human comfort threshold values found in international standards.


Author(s):  
Fredrik Wallin ◽  
Mark H. Ross ◽  
Max Rusche ◽  
Scott Morris ◽  
Steven Ray

An experimental and numerical investigation of the flow in a compressor duct with engine-realistic in-production features is presented in this paper. The experimental testing was conducted in the ND-FSCC test facility at University of Notre Dame, Indiana, USA. A baseline duct was also tested for back-to-back comparison. The ducts were heavily instrumented; duct inlet and exit flowfields were scanned using a five-hole pressure probe that provided total pressure, velocities and flow angles. Based on the five-hole probe total pressures, duct losses could be assessed. Furthermore the duct inlet boundary layers were traversed and turbulence intensity levels were assessed. For the CFD analysis of the production-like duct, a highly complex computational grid, resolving all the geometrical features present, was used. A previously validated surface roughness model was used to account for the cast aero-surfaces. Both experimental and numerical results show that there is a significant increase in loss for the production-like duct when compared to the baseline duct loss. The CFD results agree very well with experimental results for the baseline duct, which makes it possible to use the experimental data recorded for the production-like duct to validate CFD tools for real geometry effects, such as interface steps and surface roughness for example.


Author(s):  
CH. CHENGAIAH ◽  
R.V.S. SATYANARAYANA ◽  
G.V. MARUTHESWAR MARUTHESWAR

The power transfer capability of electric transmission lines are usually limited by large signals ability. Economic factors such as the high cost of long lines and revenue from the delivery of additional power gives strong intensive to explore all economically and technically feasible means of raising the stability limit. On the other hand, the development of effective ways to use transmission systems at their maximum thermal capability. Fast progression in the field of power electronics has already started to influence the power industry. This is one direct out come of the concept of FACTS aspects, which has become feasible due to the improvement realized in power electronic devices in principle the FACTS devices should provide fast control of active and reactive power through a transmission line. The UPFC is a member of the FACTS family with very attractive features. This device can independently control many parameters. This device offers an alternative mean to mitigate transmission system oscillations. It is an important question is the selection of the input signals and the adopted control strategy for this device in order to damp power oscillations in an effective and robust manner. The UPFC parameters can be controlled in order to achieve the maximal desire effect in solving first swing stability problem. This problem appears for bulky power transmission systems with long transmission lines. In this paper a MATLAB Simulink Model is considered with UPFC device to evaluate the performance of Electrical Transmission System of 22 kV and 33kV lines. In the simulation study, the UPFC facilitates the real time control and dynamic compensation of AC transmission system. The dynamic simulation is carried out in conjunction with the N-R power flow solution sequence. The updated voltages at each N-R iterative step are interpreted as dynamic variables. The relevant variables are input to the UPFC controllers.


2012 ◽  
Vol 215-216 ◽  
pp. 115-118
Author(s):  
Jia Hong Zheng ◽  
Yu Chun Liu ◽  
Min Li

Today, transmission systems are playing important roles in engineering. For all of the components in them, status of the rolling bearing has been rising. In modern times, people are making great efforts on the optimization of transmission system. At the same time, optimization design of all the internal components was also important. For all the techniques, research to the rolling bearings has become increasingly mature. In this paper, the rolling bearing in growth of box of the 2 MW wind generator was took as the research object. The load coefficient of rolling bearing was been calculated, then the reliability assessment model of the rolling bearing was been made. On the basis of which, the optimization design on the reliability was done.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1194
Author(s):  
Rafael Tobajas ◽  
Daniel Elduque ◽  
Elena Ibarz ◽  
Carlos Javierre ◽  
Luis Gracia

Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the specific studied material and type of specimen used for the experimental testing. This work focuses on the development of a new generalized model of multiaxial fatigue for rubber materials, introducing a multiparameter variable to improve fatigue life prediction by considering simultaneously relevant information concerning stresses, strains, and strain energies. The model is verified through its correlation with several published fatigue tests for different rubber materials. The proposed model has been compared with more than 20 different parameters used in the specialized literature, calculating the value of the R2 coefficient by comparing the predicted values of every model, with the experimental ones. The obtained results show a significant improvement in the fatigue life prediction. The proposed model does not aim to be a universal and definitive approach for elastomer fatigue, but it provides a reliable general tool that can be used for processing data obtained from experimental tests carried out under different conditions.


2019 ◽  
Vol 9 (10) ◽  
pp. 1997 ◽  
Author(s):  
Miguel Á. Muñoz–Bañón ◽  
Iván del Pino ◽  
Francisco A. Candelas ◽  
Fernando Torres

Research in mobile robotics requires fully operative autonomous systems to test and compare algorithms in real-world conditions. However, the implementation of such systems remains to be a highly time-consuming process. In this work, we present an robot operating system (ROS)-based navigation framework that allows the generation of new autonomous navigation applications in a fast and simple way. Our framework provides a powerful basic structure based on abstraction levels that ease the implementation of minimal solutions with all the functionalities required to implement a whole autonomous system. This approach helps to keep the focus in any sub-problem of interest (i.g. localization or control) while permitting to carry out experimental tests in the context of a complete application. To show the validity of the proposed framework we implement an autonomous navigation system for a ground robot using a localization module that fuses global navigation satellite system (GNSS) positioning and Monte Carlo localization by means of a Kalman filter. Experimental tests are performed in two different outdoor environments, over more than twenty kilometers. All the developed software is available in a GitHub repository.


2016 ◽  
Vol 249 ◽  
pp. 261-266
Author(s):  
Tomáš Bittner ◽  
Petr Bouška ◽  
Šárka Nenadálová ◽  
Milan Rydval ◽  
David Čítek

This abstract is summarizing production and subsequent experimental testing of 3D profile of the symmetrical I shape concrete from UHPC matrix and reinforced with textile glass fibres. Upper and bottom covering strips of this profile are at the outside fibres reinforced with textile glass reinforcement. Position of this reinforcement is fixed in the distance of about 3 mm from outside fibres and is connected with reinforcement of the profile stem located in its axis. Such prepared beams were tested with four-point flexure evenly loaded until fracture. Course of the measurement was continuously recorded by the automatic logger, where mostly increase of the force in relation to deflection in the middle of the span and change of position of supports were recorded. From the recorded data were prepared graphic outputs compared with the same experiments performed on I profile which is not reinforced, i.e. only UHPC matrix, and for comparison also on the profile made from UHPC matrix with use of metal wires. In the conclusion were compared achieved test results. Mainly suitability and loading capacity of individual beam types was compared. Within the experiment were performed supporting tests based on which were determined material characteristics of tested matrix and textile glass reinforcement. Tests were performed in the Klokner Institute within solution of the grant project GACŘ 13-12676S.


1994 ◽  
Author(s):  
Anders Hedman

Methods for analysis of general mechanical transmission systems with a hydrodynamic torque converter (HTC) are presented. The methods are adapted for computer calculations. The properties of the HTC must be known, either explicitly as speed and torque characteristics, or implicitly as internal geometry (blade angles, etc.). Linear relationships between the torques and between the speeds of the shafts of the transmission system (except the HTC) are easily formulated. The HTC has coupled, non-linear, relationships for torques and speeds. Different ways of including these non-linear equations are presented. This can be implemented in a computer program. Solving the equation system yields the torque and speed of each shaft of the transmission system. Power losses can be handled.


Sign in / Sign up

Export Citation Format

Share Document