scholarly journals Experimental Assessment of Influence of the Ball Bearing Raceway Curvature Ratio on the Level of Vibration

Author(s):  
Pawel Zmarzly

Raceway curvature ratio is a very important parameter, because its values influence the performance characteristics of rolling-element bearings, their durability and the level of generated vibrations. However, the level of generated vibrations is one of the most important operating parameters of the rolling-element bearings. Excessive vibrations generated by rolling-element bearings affect the operation of the whole mechanism. The article presents experimental studies aimed at evaluation of influence of the inner and outer raceway curvature ratios of 6304-type rolling-element bearings on generated vibrations values. The raceway curvature ratio was determined based on results of metrological measurements. For this purpose, the radii of the inner and outer raceways as well as the diameters of the balls were measured. Design and principle of operation of an innovative system for analysis of the raceway geometry of the rolling bearing rings was presented. The vibration analysis was carried out in three frequency ranges, i.e. low (50-300 Hz), medium (300-1,800 Hz) and high (1,800-10,000 Hz). Values of measured vibrations were expressed in Anderon units. The test results showed that increase in the raceway curvature ratio causes a moderate decrease in the value of the generated vibrations. The research results presented in this article will serve as a guidance to designers and manufacturers of the rolling-element bearings on how to modify the geometry of raceways and balls to obtain bearings that generate low vibration values. That is very important in car transportation.

2015 ◽  
Vol 39 (3) ◽  
pp. 593-603
Author(s):  
Xinghui Zhang ◽  
Jianshe Kang ◽  
Hongzhi Teng ◽  
Jianmin Zhao

Gear and bearing faults are the main causes of gearbox failure. Till now, incipient fault diagnosis of these two components has been a problem and needs further research. In this context, it is found that Lucy–Richardson deconvolution (LRD) proved to be an excellent tool to enhance fault diagnosis in rolling element bearings and gears. LRD’s good identification capabilities of fault frequencies are presented which outperform envelope analysis. This is very critical for early fault diagnosis. The case studies were carried out to evaluate the effectiveness of the proposed method. The results of simulated and experimental studies show that LRD is efficient in alleviating the negative effect of noise and transmission path. The results of simulation and experimental tests demonstrated outperformance of LRD compared to classical envelope analysis for fault diagnosis in rolling element bearings and gears, especially when it is applied to the processing of signals with strong background noise.


2017 ◽  
Vol 65 (4) ◽  
pp. 541-551 ◽  
Author(s):  
S. Adamczak ◽  
P. Zmarzły

AbstractThis paper provides a quantitative analysis of how raceway waviness (RONt) in 6304-type bearings affects their vibration. The waviness of bearing races was measured at the actual points of contact between the balls and the races. The measurements were conducted in the range of 16–50 undulations per revolution (UPR). The bearing vibration was analyzed in three bandwidths of frequency: low (LB) (50 ÷ 300 Hz), medium MB (300 ÷ 1800 Hz) and high HB (1800 ÷ 10 000 Hz), as well as in the full RMS bandwidth. The paper also presents the procedure used to determine the actual points of contact between the ball and each race to specify the point of waviness measurement. The method of calculation of the contact angle for a ball bearing is also discussed. The Pearson linear correlation coefficients were determined to analyze the relationships between the waviness parameters and the level of vibration. The test results show that an increase in the surface waviness on the inner and outer raceways causes an increase in the vibration level. The influence is most visible for the medium frequency bandwidth.


1999 ◽  
Vol 121 (2) ◽  
pp. 215-223 ◽  
Author(s):  
A. Bourdon ◽  
J. F. Rigal ◽  
D. Play

This is the second part of two companion papers, the first of which is “Static Rolling Bearing Models in a C.A.D. Environment for the Study of Complex Mechanism: Part I—Rolling Bearing Model.” A general methodology for the accurate modeling of the nonlinear behavior of ball and roller bearings is proposed. A stiffness matrix is defined both for each rolling element and for the complete rolling bearing. Thus, it can be introduced into standard finite element models of complex mechanical systems, with the aim of predicting mechanical behavior and load and strain distributions. This method is applied to two cases of helicopter and automobile gearboxes. Deformable bearing rings considerably modify contact angle and load distribution, thus the coefficient values of the stiffness matrix are different from the classical values. The paper highlights how important it is to consider an overall model of the mechanical system rather than a local one in the vicinity of the bearings.


2014 ◽  
Vol 6 ◽  
pp. 803919 ◽  
Author(s):  
Jianzhong Zhou ◽  
Jian Xiao ◽  
Han Xiao ◽  
Weibo Zhang ◽  
Wenlong Zhu ◽  
...  

This paper presented a novel procedure based on the ensemble empirical mode decomposition and extreme learning machine. Firstly, EEMD was utilized to decompose the vibration signals into a number of IMFs adaptively and the permutation entropy of each IMF was calculated to generate the fault feature matrix. Secondly, a new extreme learning machine was proposed by combining ensemble extreme learning machine and the evolutionary extreme learning machine which used an artificial bee colony algorithm to optimize the input weights and hidden bias. The proposed diagnosis algorithm was applied on the three rolling bearing fault diagnosis experiments. The numerical experimental results demonstrated that the proposed method had an improved generalization performance than traditional extreme and other variants.


Author(s):  
Harvey P. Nixon

Lubricant formulations and lubricant additives have been demonstrated to have a major impact on the surface durability of rolling element bearings. However, there are very few standard tests used to assess the performance aspects of lubricants as it relates to bearing surface performance. Lubricant formulations have been slanted heavily toward protecting gear concentrated contacts from galling and wear. In addition, much of the performance differentiation of lubricants has been dependent on highly accelerated standardized laboratory tests related to gears. Methods have been developed for properly evaluating a lubricant’s performance characteristics as it relates to bearings. These methods are explained and the corresponding test results are reviewed to show their effectiveness as a lubricant performance evaluation tool. The implications of these findings provide direction and suggestions for ways to minimize or avoid potential detrimental performance effects of lubricant formulations on rolling element bearings.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jiyong Li ◽  
Shunming Li ◽  
Xiaohong Chen ◽  
Lili Wang

Rolling element bearings are widely used in high-speed rotating machinery; thus proper monitoring and fault diagnosis procedure to avoid major machine failures is necessary. As feature extraction and classification based on vibration signals are important in condition monitoring technique, and superfluous features may degrade the classification performance, it is needed to extract independent features, so LSSVM (least square support vector machine) based on hybrid KICA-GDA (kernel independent component analysis-generalized discriminate analysis) is presented in this study. A new method named sensitive subband feature set design (SSFD) based on wavelet packet is also presented; using proposed variance differential spectrum method, the sensitive subbands are selected. Firstly, independent features are obtained by KICA; the feature redundancy is reduced. Secondly, feature dimension is reduced by GDA. Finally, the projected feature is classified by LSSVM. The whole paper aims to classify the feature vectors extracted from the time series and magnitude of spectral analysis and to discriminate the state of the rolling element bearings by virtue of multiclass LSSVM. Experimental results from two different fault-seeded bearing tests show good performance of the proposed method.


2013 ◽  
Vol 819 ◽  
pp. 254-258 ◽  
Author(s):  
Wei Dong Cheng ◽  
Robert X. Gao ◽  
Jin Jiang Wang ◽  
Tian Yang Wang ◽  
Wei Gang Wen ◽  
...  

Defect diagnosis of rolling element bearings operating under time-varying rotational speeds entails order tracking and analysis techniques that convert a vibration signal from the time domain to the angle domain to eliminate the effect of speed variations. When a signal is resampled at a constant angular increment, the amount of data padded into each data segment will vary, depending on the rate of change in the rotational speeds. This leads to changes in the distance between the adjacent impulse peaks, and consequently, the result of order analysis. This paper presents a quantitative analysis of key factors affecting the accuracy of order analysis on rolling element bearings under variable speeds. An analytical model is established and simulated. The effects of speed variation, instantaneous speed, angular interval between impulses, and the rising time of impulse are specified. It is concluded that the results of order analysis will be smaller as the rotational speed increases, and becomes larger when the speed decreases. Furthermore, the error is larger under low speeds than high speed.


Author(s):  
Xingnan Zhang ◽  
Romeo Glovnea

Rolling bearings are the second most used machine components. They work in what it is called elastohydrodynamic lubrication regime. The geometry of rolling element bearings makes the direct measurement of the lubricant film thickness a challenging task. Optical interferometry is widely used in laboratory conditions for studying elastohydrodynamic lubrication however it cannot be used directly in rolling element bearings thus the only suitable methods are electrical techniques. Of these, film thickness measurement based on electrical capacitance of the contacts has been used in the past by a number of authors. One of the limitations of the capacitance method, when used in rolling bearings, is that it cannot distinguish between the contacts of every rolling element and raceway on one hand and on the other between the inner and outer ring contacts. In the present study the authors used an original test rig which can measure the film thickness for only one ball and separately for the inner and outer rings of a radial ball bearing. This paper thus shows for the first-time results of the lubricant film thickness, at the inner and outer raceways, in grease lubricated rolling bearings.


1999 ◽  
Vol 121 (4) ◽  
pp. 886-891 ◽  
Author(s):  
Franck Laurant ◽  
Dara W. Childs

Given the inherent DN and assembly limitations of rolling-element bearings, research is underway to develop hybrid bearings (combining hydrostatic and hydrodynamic effects) for their replacement. Hybrid bearings develop cross-coupled stiffness coefficients due to fluid rotation, leading to predictions of onset speeds of instability and potential limitations in their range of application. Injecting fluid into a bearing recess against rotation, versus the customary radial injection, can reduce the circumferential flow and the cross-coupled-stiffness coefficients, and increase the margin of stability. Test results are presented here for a hybrid bearing with against-rotation injection. The bearing has a 76.4 mm diameter with LID = 1, and CrIR = 0.001. Data are presented for 55°C water at three speeds out to 25000 rpm and three pressures out to 7.0 MPa. Compared to a radial-injection hybrid bearing, experiments show injection against rotation enhances stability, yielding reductions of cross-coupled stiffness coefficients and whirl frequency ratios. However, increased flow rate and a drop of effective stiffness with increasing speed adversely affect the bearing performance. The prediction code developed by San Andres (1995) includes angled-orifice injection. The code correctly predicts trends, but at low speed, measured cross-coupled stiffness coefficients are positive, versus a prediction of larger negative values.


Sign in / Sign up

Export Citation Format

Share Document