scholarly journals Traditional Chinese medicine-based neurorestorative therapy for Alzheimer’s and Parkinson’s disease

2019 ◽  
Vol 07 (04) ◽  
pp. 207-222 ◽  
Author(s):  
Zhu Zhang ◽  
Shiqing Zhang ◽  
Cathy Nga-Ping Lui ◽  
Peili Zhu ◽  
Zhang Zhang ◽  
...  

The prevalence of multiple neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has been dramatically increasing, particularly in the aging population. However, the currently available therapies merely alleviate the symptoms of these diseases and are unable to retard disease progression significantly. Traditional Chinese medicine (TCM) has been used in clinical practice for thousands of years for ameliorating symptoms or interfering with the pathogenesis of aging- associated diseases. Modern pharmacological studies have proved that TCM imparts disease-modifying therapeutic effects against these diseases, such as protection of neurons, clearance of protein aggregates, and regulation of neuroinflammation. This review summarizes the evidence from recent studies on AD and PD therapies regarding the neuroprotective activities and molecular mechanisms of a series of TCM formulations comprising herbs and their active ingredients. The findings of this review support the use of TCM as an alternative source of therapy for the treatment of neurodegenerative diseases.

Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Aihua Zhang ◽  
Hui Sun ◽  
Shi Qiu ◽  
Xijun Wang

Traditional Chinese medicine (TCM) formula has been playing a very important role in health protection and disease control for thousands of years. Guided by TCM syndrome theories, formula are designed to contain a combination of various kinds of crude drugs that, when combined, will achieve synergistic efficacy. However, the precise mechanism of synergistic action remains poorly understood. One example is a famous TCM formula Yinchenhao Tang (YCHT), whose efficacy in treating hepatic injury (HI) and Jaundice syndrome, has recently been well established as a case study. We also conducted a systematic analysis of synergistic effects of the principal compound using biochemistry, pharmacokinetics and systems biology, to explore the key molecular mechanisms. We had found that the three component (6,7-dimethylesculetin (D), geniposide (G), and rhein (R)) combination exerts a more robust synergistic effect than any one or two of the three individual compounds by hitting multiple targets. They can regulate molecular networks through activating both intrinsic and extrinsic pathways to synergistically cause intensified therapeutic effects. This paper provides an overview of the recent and potential developments of chemical fingerprinting coupled with systems biology advancing drug discovery towards more agile development of targeted combination therapies for the YCHT.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Tao-Hua Lan ◽  
Lu-Lu Zhang ◽  
Yong-Hua Wang ◽  
Huan-Lin Wu ◽  
Dan-Ping Xu

Cardiovascular diseases (CVDs) have been recognized as first killer of human health. The underlying mechanisms of CVDs are extremely complicated and not fully revealed, leading to a challenge for CVDs treatment in modern medicine. Traditional Chinese medicine (TCM) characterized by multiple compounds and targets has shown its marked effects on CVDs therapy. However, system-level understanding of the molecular mechanisms is still ambiguous. In this study, a system pharmacology approach was developed to reveal the underlying molecular mechanisms of a clinically effective herb formula (Wen-Dan Decoction) in treating CVDs. 127 potential active compounds and their corresponding 283 direct targets were identified in Wen-Dan Decoction. The networks among active compounds, targets, and diseases were built to reveal the pharmacological mechanisms of Wen-Dan Decoction. A “CVDs pathway” consisted of several regulatory modules participating in therapeutic effects of Wen-Dan Decoction in CVDs. All the data demonstrates that Wen-Dan Decoction has multiscale beneficial activity in CVDs treatment, which provides a new way for uncovering the molecular mechanisms and new evidence for clinical application of Wen-Dan Decoction in cardiovascular disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jing Wang ◽  
Qibiao Wu ◽  
Lu Ding ◽  
Siyu Song ◽  
Yaxin Li ◽  
...  

Respiratory diseases, especially the pandemic of respiratory infectious diseases and refractory chronic lung diseases, remain a key clinical issue and research hot spot due to their high prevalence rates and poor prognosis. In this review, we aimed to summarize the recent advances in the therapeutic effects and molecular mechanisms of key common bioactive compounds from Chinese herbal medicine. Based on the theories of traditional Chinese medicine related to lung diseases, we searched several electronic databases to determine the high-frequency Chinese medicines in clinical application. The active compounds and metabolites from the selected medicines were identified using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) by analyzing oral bioavailability and drug similarity index. Then, the pharmacological effects and molecular mechanisms of the selected bioactive compounds in the viral and bacterial infections, inflammation, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, and lung cancer were summarized. We found that 31 bioactive compounds from the selected 10 common Chinese herbs, such as epigallocatechin-3-gallate (EGCG), kaempferol, isorhamnetin, quercetin, and β-sitosterol, can mainly regulate NF-κB, Nrf2/HO-1, NLRP3, TGF-β/Smad, MAPK, and PI3K/Akt/mTOR pathways to inhibit infection, inflammation, extracellular matrix deposition, and tumor growth in a series of lung-related diseases. This review provides novel perspectives on the preclinical study and clinical application of Chinese herbal medicines and their bioactive compounds against respiratory diseases.


2020 ◽  
Vol 23 (1) ◽  
pp. 28-40
Author(s):  
Jia Li ◽  
Xinchang Qi ◽  
Yajuan Sun ◽  
Yingyu Zhang ◽  
Jiajun Chen

Aim and Objective: Effective components and the mechanism of action of Zhichan powder for the treatment of Parkinson's disease were researched at a systematic level. Materials and Methods: Screening of active components in Zhichan powder for the treatment of Parkinson's disease was conducted using the Traditional Chinese Medicine Systems Pharmacology database, and a medicine-target-disease network was established with computational network pharmacology. Results: By using network pharmacology methods, we identified 18 major active components in Zhichan powder through screening, indicating a connection between chemical components of this Traditional Chinese Medicine and Parkinson’s disease-related targets. Conclusion: The medicine-target-disease system of Zhichan powder established by network pharmacology permitted visualization of clustering and differences among chemical components in this prescription, as well as the complex mechanism of molecular activities among those effective components, relevant targets, pathways, and the disease. Thus, our results provide a new perspective and method for revealing the mechanism of action of Traditional Chinese Medicine prescriptions.


Science ◽  
2018 ◽  
Vol 362 (6414) ◽  
pp. eaat8407 ◽  
Author(s):  
Tae-In Kam ◽  
Xiaobo Mao ◽  
Hyejin Park ◽  
Shih-Ching Chou ◽  
Senthilkumar S. Karuppagounder ◽  
...  

The pathologic accumulation and aggregation of α-synuclein (α-syn) underlies Parkinson’s disease (PD). The molecular mechanisms by which pathologic α-syn causes neurodegeneration in PD are not known. Here, we found that pathologic α-syn activates poly(adenosine 5′-diphosphate–ribose) (PAR) polymerase-1 (PARP-1), and PAR generation accelerates the formation of pathologic α-syn, resulting in cell death via parthanatos. PARP inhibitors or genetic deletion of PARP-1 prevented pathologic α-syn toxicity. In a feed-forward loop, PAR converted pathologic α-syn to a more toxic strain. PAR levels were increased in the cerebrospinal fluid and brains of patients with PD, suggesting that PARP activation plays a role in PD pathogenesis. Thus, strategies aimed at inhibiting PARP-1 activation could hold promise as a disease-modifying therapy to prevent the loss of dopamine neurons in PD.


Sign in / Sign up

Export Citation Format

Share Document