Analisa Rugi-Rugi Daya Dan Jatuh Tegangan Pada Saluran Transmisi 150 kV GI Pati Bay GI Jekulo Menggunakan ETAP 12.6.0

eLEKTRIKA ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 80
Author(s):  
Bayu Andik Anggoro ◽  
Sukarno Budi Utomo ◽  
Ida Widihastuti

<p><em>In the electric power system, the transmission system is a pathway to transmit electrical energy from the generator to the substation or from the substation to another substation which allows power losses and large voltage drops if the transmission length is relatively far and the overload is very high. affect the reliability of the transmission system. Analysis of power losses and voltage drop on the 150 KV high voltage transmission system at the Pati substation to the Jekulo substation. The analysis was carried out by conducting a survey at the research location then doing manual calculations and calculations using ETAP 12.6.0 software. The research method used was that the researcher collected voltage and current data at 10.00 and 19.00 WIB in one month and the transmission system supporting equipment specifications to be simulated in ETAP 12.6.0 from Pati and Jekulo substations in order to make comparisons between manual calculations and ETAP. 12.6.0.The conclusion of this study is the calculation of power losses manual calculation and simulation of ETAP 12.6.0 has a difference of 2.5% with the value of manual calculation power losses of 685.5 KW and the power losses from The simulation results reached 266.6 KW and the calculation of the presentation of power losses in the transmission line of GI Pati - GI Jekulo reached 6.8% exceeding the service percentage variation limit due to losses according to SPLN No. 72 of 1987 a maximum of 5% at least -10%.</em></p>

2019 ◽  
Vol 6 (2) ◽  
pp. 7
Author(s):  
I. K. A. Wijaya ◽  
R. S. Hartati ◽  
I W. Sukerayasa

Saba feeder is a feeder who supplies 78 distribution transformers with feeder length 38,959 kms, through this Saba feeder electrical energy is channeled radially to each distribution substation. In 2017 the voltage shrinkage at Saba feeder was 9.88% (18,024 kV) while the total power loss was 445.5 kW. In this study an attempt was made to overcome the voltage losses and power losses using the method of optimizing bank capacitors with genetic algorithms and network reconfiguration. The best solution obtained from this study will be selected for repair of voltage losses and power losses in Saba feeders. The results showed that by optimizing bank capacitors using genetic algorithms, the placement of capacitor banks was placed on bus 23 (the channel leading to the BB0024 transformer) and successfully reduced the power loss to 331.7 kW. The network reconfiguration succeeded in fixing the voltage on the Saba feeder with a voltage drop of 4.75% and a total power loss of 182.7 kW. With the combined method, reconfiguration and optimization of bank capacitors with genetic algorithms were obtained on bus 27 (channel to transformer BB0047) and managed to reduce power losses to 143 kW.


Author(s):  
Robi Kurniawan ◽  
Ardiansyah Nasution ◽  
Arnawan Hasibuan ◽  
Muzamir Isa ◽  
Muskan Gard ◽  
...  

Distributed Generation (DG) is a small capacity generator located in the electricity distribution system and is usually placed on buses that are connected directly to the load. Placement of distributed generation is one of the technical efforts to reduce voltage drop and power losses in the system. In addition, load flow analysis is a study to plan and determine the amount of power in an electric power system. The results of power losses after adding distributed generation were the best in the fifth experiment on bus 149, where the system experienced a total loss of active power (P) previously of 720,822 kW, to 682,939 kW and total loss of reactive power (Q) previously of 530.02 kVar, to 405.835 kVar. From the results of the calculation of the power flow using ETAP software (Electrical Transient Analyzer Program). So, it can be concluded that the electrical network system can be said to be good. The results obtained are the more DG (wind turbine generator) that is input into the bus it will reduce the voltage drop that occurs. After simulating the overall voltage drop, it still meets the standards according to the results of the Text Report on ETAP.


Author(s):  
Benbouza Naima ◽  
Benfarhi Louiza ◽  
Azoui Boubekeur

Background: The improvement of the voltage in power lines and the respect of the low voltage distribution transformer substations constraints (Transformer utilization rate and Voltage drop) are possible by several means: reinforcement of conductor sections, installation of new MV / LV substations (Medium Voltage (MV), Low Voltage (LV)), etc. Methods: Connection of mini-photovoltaic systems (PV) to the network, or to consumers in underserved areas, is a well-adopted solution to solve the problem of voltage drop and lighten the substation transformer, and at the same time provide clean electrical energy. PV systems can therefore contribute to this solution since they produce energy at the deficit site. Results: This paper presents the improvement of transformer substation constraints, supplying an end of low voltage electrical line, by inserting photovoltaic systems at underserved subscribers. Conclusion: This study is applied to a typical load pattern, specified to the consumers region.


Author(s):  
Fahim Shahriyar ◽  
Monirul Islam ◽  
Arindom Chakraborty ◽  
Mehedi Hasan ◽  
Hasan U. Zaman ◽  
...  

Author(s):  
Josifs Survilo ◽  
Antons Kutjuns

Operation Modes of HV/MV SubstationsA distribution network consists of high voltage grid, medium voltage grid, and low voltage grid. Medium voltage grid is connected to high voltage grid via substations with HV/MV transformers. The substation may contain one, mostly two but sometimes even more transformers. Out of reliability and expenditure considerations the two transformer option prevail over others mentioned. For two transformer substation, there may be made choice out of several operation modes: 1) two (small) transformers, with rated power each over 0.7 of maximum substation load, permanently in operation; 2) one (big) transformer, with rated power over maximum substation load, permanently in operation and small transformer in constant cold reserve; 3) big transformer in operation in cold season, small transformer-in warm one. Considering transformer load losses and no load losses and observing transformer loading factor β it can be said that the mode 1) is less advantageous. The least power losses has the mode 3). There may be singled out yet three extra modes of two transformer substations: 4) two big transformers in permanent operation; 5) one big transformer permanently in operation and one such transformer in cold reserve; 6) two small transformers in operation in cold season of the year, in warm season-one small transformer on duty. At present mostly two transformers of equal power each are installed on substations and in operation is one of them, hence extra mode 5). When one transformer becomes faulty, it can be changed for smaller one and the third operation mode can be practiced. Extra mode 4) is unpractical in all aspects. The mode 6) has greater losses than the mode 3) and is not considered in detail. To prove the advantage of the third mode in sense of power losses, the notion of effective utilization time of power losses was introduced and it was proven that relative value of this quantity diminishes with loading factor β. The use of advantageous substation option would make it possible to save notable amount of electrical energy but smaller transformer lifetime of this option must be taken into account as well.


2021 ◽  
pp. 51-56
Author(s):  
NATALIA VIKTOROVNA SAVINA ◽  
◽  
VLADIMIR ALEXANDROVICH GAMOLIN ◽  
LARISA ANATOLIEVNA MYASOEDOVA ◽  
◽  
...  

Given the ever-increasing cost of electrical energy, minimizing of power losses is one of the main tasks for the electric grid systems. In this paper, we consider the features of intellectualization of electricity metering and the effect of the introduction of smart metering systems in terms of reduction of power losses.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Dini Fauziah ◽  
Waluyo Waluyo ◽  
Ismail Muhammad Khaidir

ABSTRAK Isolator merupakan komponen yang penting dijaga keandalannya dalam sistem transmisi dan distribusi tenaga listrik. Isolator rentan mengalami kegagalan akibat lingkungan, karena terpapar langsung kondisi dimana isolator tersebut terpasang. Salah satu jenis isolator yang sering digunakan adalah bahan keramik, dimana memiliki kelebihan diantaranya kekuatan mekanik yang cukup handal. Namun kekurangan isolator jenis ini adalah sifat permukaannya yang hidrofilik, yaitu mudah menyerap air sehingga bila digunakan pada kelembaban tinggi cenderung memicu timbulnya arus bocor. Arus bocor merupakan parameter penting pada isolator karena sering menjadi penyebab kegagalan isolator. Untuk mengetahui seberapa besar pengaruh kondisi lingkungan terhadap arus bocor, dilakukan pengujian terhadap isolator keramik dalam waktu 24 jam. Data arus bocor diambil setiap 3 jam untuk melihat perubahannya berdasarkan perubahan kelembaban, dan suhu lingkungan. Hasilnya didapat bahwa semakin tinggi kelembaban udara, dan semakin rendah suhu lingkungan maka arus bocor semakin tinggi. Hasil penelitian ini dapat dijadikan acuan untuk mengantisipasi kegagalan isolator keramik akibat arus bocor sehingga keandalan sistem tenaga listrik dapat terjaga. Kata kunci: Isolator keramik, Lingkungan, Kelembaban, Suhu. ABSTRACT Isolator is an important component that must be maintained to keep electric power transmission and distribution system reliability. Isolators are susceptible to failure due to the environment, because they are directly exposed to conditions where the insulator installed. Ceramic insulator is one type of isolator that is often used, which has advantages including mechanical strength that is quite reliable. However, the lack of this type of isolator is its hydrophilic surface, which is easy to absorb water so that when used at high humidity tends to trigger a leakage current. Leakage current is an important parameter in an insulator because it can be a cause due to insulator failure. To find out how environmental conditions impact on leakage currents along day, a ceramic isolator is tested within 24 hours. Leakage current data is taken every 3 hours to see the changes based on changes in humidity, and ambient temperature. The result is the higher humidity of the air, and the lower ambient temperature, can make insulator leakage current rise up. The results of this study can be used as a reference to anticipate the failure of ceramic insulators due to leakage currents so that the reliability of the electric power system can be maintained. Keywords: ceramic insulator, environtment, humidity, temperature.


2021 ◽  
pp. 21-27
Author(s):  
Sergey I. Volskiy ◽  
◽  
Yuri Yu. SKOROKHOD ◽  
Nikolay Echkilev ◽  
◽  
...  

The high-voltage converter with the input voltage of 3000 V DC is considered for use as a power supply for auxiliary circuits of commuter electric trains and passenger cars that are used on Russian railways. The limitations on the use of semiconductor devices in converters with an input voltage of 3000 V are shown. The power electrical circuits of the input units of the considered high-voltage converters are shown when using of 1700 and 6500 V IGBT. The expressions for calculating the power losses and the algorithm for selecting the switching frequency of 6500 in IGBT are given. This article is of interest to developers of high-voltage DC converters with an input voltage of 3000 V and higher, which choose IGBT for the power circuit of input units with using the high frequency principle of the electrical energy transformation.


Sign in / Sign up

Export Citation Format

Share Document