scholarly journals Vibrio parahaemolyticus: a review on the pathogenicity, antibiotic resistance, foodborne outbreaks, and detection methods

Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 1-11
Author(s):  
A. Naziahsalam Kehinde ◽  
J.Y.H. Tang ◽  
Y. Nakaguchi

Vibrio parahaemolyticus is a Gram-negative bacterium that is a natural inhabitant of the marine habitat. V. parahaemolyticus is a human foodborne pathogen linked to the consumption of contaminated raw and undercooked seafood. V. parahaemolyticus pathogenicity has been linked to the presence of two virulence gene that is thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). The emergence of antibiotic resistant strain of V. parahaemolyticus is a menace to public health. V. parahaemolyticus is linked to several foodborne diseases in Asian countries including Japan, China and Taiwan and has been acknowledged as the major cause of human gastroenteritis in the United States. The emergence of pathogenic Vibrio species in shellfish in Malaysia requires persistent monitoring and public enlightenment on food safety. Several detection methods based on its virulence factors are used in detecting V. parahaemolyticus. This review will provide an insight on V. parahaemolyticus, its pathogenicity, antibiotic resistance, foodborne outbreaks and detection methods.

2003 ◽  
Vol 69 (3) ◽  
pp. 1521-1526 ◽  
Author(s):  
Angelo DePaola ◽  
Jessica L. Nordstrom ◽  
John C. Bowers ◽  
Joy G. Wells ◽  
David W. Cook

ABSTRACT Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh + V. parahaemolyticus than previously reported.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abu Baker Siddique ◽  
M. Moniruzzaman ◽  
Sobur Ali ◽  
Md. Nayem Dewan ◽  
Mohammad Rafiqul Islam ◽  
...  

Vibrio parahaemolyticus is a major foodborne pathogen responsible for significant economic losses in aquaculture and a threat to human health. Here, we explored the incidence, virulence potential, and diversity of V. parahaemolyticus isolates from aquaculture farms in Bangladesh. We examined a total of 216 water, sediment, Oreochromis niloticus (tilapia), Labeo rohita (rui), and Penaeus monodon (shrimp) samples from the aquaculture system where 60.2% (130/216) samples were positive for V. parahaemolyticus. Furthermore, we identified 323 V. parahaemolyticus strains from contaminated samples, 17 of which were found positive for trh, a virulence gene. Four isolates out of the 17 obtained were able to accumulate fluid in the rabbit ileal loop assay. The correlation between the contamination of V. parahaemolyticus and environmental factors was determined by Pearson correlation. The temperature and salinity were significantly correlated (positive) with the incidence of V. parahaemolyticus. Most of the pathogenic isolates (94.1%) were found resistant to ampicillin and amoxicillin. O8: KUT was the predominant serotype of the potentially pathogenic isolates. ERIC-PCR reveals genetic variation and relatedness among the pathogenic isolates. Therefore, this region-specific study establishes the incidence of potential infection with V. parahaemolyticus from the consumption of tilapia, rui, and shrimp raised in farms in Satkhira, Bangladesh, and the basis for developing strategies to reduce the risk for diseases and economic burden.


2017 ◽  
Vol 63 (1) ◽  
pp. 54 ◽  
Author(s):  
N. SOLOMAKOS (Ν. ΣΟΛΩΜΑΚΟΣ) ◽  
A. PEXARA (Α. ΠΕΞΑΡΑ) ◽  
A. GOVARIS (Α. ΓΚΟΒΑΡΗΣ)

Among the 30 species of the genus Vibrio, only 13 of them are pathogenic to humans. All pathogenic vibrios have been reported to cause foodborne diseases, although Κ parahaemolyticus is considered the most important pathogenic Vibrio. V parahaemolyticus is a halophilic bacterium that occurs naturally in aquatic environments worldwide. The pathogen caused sporadic diarrhoea mainly associated with the consumption of raw or undercooked seafood up to recent years. Since 1996, the incidence of V. parahaemolyticus infections has increased dramatically. V. parahaemolyticus is the leading cause of seafood associated bacterial gastroenteritis in the United States and of the half foodborne outbreaks in some Asian countries. This increase in incidence has been related to the emergence of the 03:K6 serovar. The pathogenic V. parahaemolyticus strains can produce a thermostable direct hemolysin or a thermostable direct hemolysin-related hemolysin, which arc encoded by the tdh and trh genes, respectively. Vibrio parahaemolyticus has not been included in the microbiological criteria of E.U. Food legislation, probably because the risk by this pathogen was considered rather low in liurope. However, climate changes favour the growth of the pathogen in seawater. Recent studies in Spain and France have shown that V. parahaemolyticus infections from seafood consumption have been increased. The emergence of the pathogen in liurope is of public health concern and emphasizes the importance of microbiological surveillance and control programs for V, parahaemolyticus.


2017 ◽  
Vol 5 (35) ◽  
Author(s):  
Douglas B. Rusch ◽  
Dean A. Rowe-Magnus

ABSTRACT Vibrio vulnificus has the highest death rate and economic burden per case of any foodborne pathogen in the United States. A complete genome sequence of the type strain promotes comparative analyses with other clinical and environmental isolates, improving our understanding of this important human pathogen and successful environmental organism.


2020 ◽  
Vol 83 (9) ◽  
pp. 1480-1487
Author(s):  
WON CHOI ◽  
SANG-SOON KIM

ABSTRACT Bacillus cereus has been reported as a foodborne pathogen worldwide. Although food processing technologies to inactivate the pathogen have been developed for decades, foodborne outbreaks related to B. cereus have occurred. In the present review, foodborne outbreaks, germination, inactivation, and detection of B. cereus are discussed, along with inactivation mechanisms. B. cereus outbreaks from 2003 to 2016 are reported based on food commodity, number of cases, and consequent illnesses. Germination before sporicidal treatments is highlighted as an effective way to inactivate B. cereus, because the resistance of the pathogen increases significantly following sporulation. Several germinants used for B. cereus are listed, and their efficacies are compared. Finally, recently used interventions with sporicidal mechanisms are identified, and rapid detection methods that have been developed are discussed. Combining two or more interventions, known as the hurdle technology concept, is suggested to maximize the sporicidal effect. Further study is needed to ensure food safety and to understand germination mechanisms and sporicidal resistance of B. cereus. HIGHLIGHTS


2019 ◽  
Vol 10 (1) ◽  
pp. 409-427 ◽  
Author(s):  
Joshua B. Gurtler ◽  
Susanne E. Keller

Spices in the desiccated state provide an environment that allows the survival of many foodborne pathogens. Currently, the incidence of pathogen-positive spices imported into the United States is 1.9 times higher than for any other imported food. Correspondingly, imported spices have been associated with numerous foodborne outbreaks and multiple product recalls. Despite the association with recalls and outbreaks, the actual pathogen populations in spices, when found, are frequently extremely small. In addition to pathogenic bacterial species, toxigenic molds have been frequently recovered from spices, and aflatoxins have been found in as many as 58% of the spices sampled. The presence of toxigenic molds is especially problematic to the immunocompromised or those on immunosuppressive therapy and has been linked to gut aspergillosis. Numerous detection methods, including both traditional and advanced DNA regimes, are being tested to optimize recovery of pathogens from spices. Further, a number of new inactivation intervention methods to decontaminate spices are examined and discussed.


2009 ◽  
Vol 72 (10) ◽  
pp. 2110-2113 ◽  
Author(s):  
ANGELO DePAOLA ◽  
JESSICA L. JONES ◽  
KATHY E. NOE ◽  
ROBIN H. BYARS ◽  
JOHN C. BOWERS

From June through October 2004, the U.S. Food and Drug Administration collected oysters (61 samples) that had been subjected to postharvest processing (PHP) methods, including mild heat treatment, freezing, and high hydrostatic pressure, from processors and retail markets in various states to determine Vibrio vulnificus and V. parahaemolyticus levels. Presence in a 25-g sample and most probable number (MPN) using standard enrichment and selective isolation procedures were utilized. Suspect colonies were isolated and identified using DNA probe colony hybridization. Neither species of vibrio was detected in 25-g portions of most samples regardless of the PHP. The lowest frequency of isolation of either pathogen (&lt;10%) was observed with the mild heat process. Few (12 to 13%) frozen samples collected at the processor but not at retail contained &gt;30 MPN/g of either pathogen. The mean levels of either organism in PHP oysters observed in the present study were 5 to 6 log less than in unprocessed raw Gulf Coast oysters. Of the 70 V. vulnificus isolates examined, only 5 possessed the putative virulence marker, type B 16S rRNA. Neither the thermostable direct hemolysin (tdh) nor the tdh-related hemolysin (trh) virulence gene was detected in any of the 40 V. parahaemolyticus isolates examined in the present study. These data suggest that if there is any selective advantage to pathogenic strains of V. vulnificus and V. parahaemolyticus, these differences are minimal. These results indicate that all PHP treatments greatly reduce exposure of V. vulnificus and V. parahaemolyticus to raw-oyster consumers. Consequently, these PHP oysters pose a much lower risk of illness to consumers due to these pathogens.


2003 ◽  
Vol 69 (7) ◽  
pp. 3883-3891 ◽  
Author(s):  
Yukiko Hara-Kudo ◽  
Kanji Sugiyama ◽  
Mitsuaki Nishibuchi ◽  
Ashrafuzzaman Chowdhury ◽  
Jun Yatsuyanagi ◽  
...  

ABSTRACT Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.


2012 ◽  
Vol 78 (24) ◽  
pp. 8631-8638 ◽  
Author(s):  
Rohinee Paranjpye ◽  
Owen S. Hamel ◽  
Asta Stojanovski ◽  
Martin Liermann

ABSTRACTSince 1997, cases ofVibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenicV. parahaemolyticus(positive for the thermostable direct hemolysin gene,tdh) in oysters, although significant concentrations oftdh+V. parahaemolyticusstrains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markersorf8andtoxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive fortdh,trh, andureRgenes, while a significant proportion of environmental isolates weretdh+buttrhnegative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, andtdh+,trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that weretdhandtrhnegative. The presence of significant concentrations oftdh+,trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β intdh- andtrh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.


Sign in / Sign up

Export Citation Format

Share Document