scholarly journals Characterization of Pathogenic Vibrio parahaemolyticus Isolated From Fish Aquaculture of the Southwest Coastal Area of Bangladesh

2021 ◽  
Vol 12 ◽  
Author(s):  
Abu Baker Siddique ◽  
M. Moniruzzaman ◽  
Sobur Ali ◽  
Md. Nayem Dewan ◽  
Mohammad Rafiqul Islam ◽  
...  

Vibrio parahaemolyticus is a major foodborne pathogen responsible for significant economic losses in aquaculture and a threat to human health. Here, we explored the incidence, virulence potential, and diversity of V. parahaemolyticus isolates from aquaculture farms in Bangladesh. We examined a total of 216 water, sediment, Oreochromis niloticus (tilapia), Labeo rohita (rui), and Penaeus monodon (shrimp) samples from the aquaculture system where 60.2% (130/216) samples were positive for V. parahaemolyticus. Furthermore, we identified 323 V. parahaemolyticus strains from contaminated samples, 17 of which were found positive for trh, a virulence gene. Four isolates out of the 17 obtained were able to accumulate fluid in the rabbit ileal loop assay. The correlation between the contamination of V. parahaemolyticus and environmental factors was determined by Pearson correlation. The temperature and salinity were significantly correlated (positive) with the incidence of V. parahaemolyticus. Most of the pathogenic isolates (94.1%) were found resistant to ampicillin and amoxicillin. O8: KUT was the predominant serotype of the potentially pathogenic isolates. ERIC-PCR reveals genetic variation and relatedness among the pathogenic isolates. Therefore, this region-specific study establishes the incidence of potential infection with V. parahaemolyticus from the consumption of tilapia, rui, and shrimp raised in farms in Satkhira, Bangladesh, and the basis for developing strategies to reduce the risk for diseases and economic burden.

Food Research ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 1-11
Author(s):  
A. Naziahsalam Kehinde ◽  
J.Y.H. Tang ◽  
Y. Nakaguchi

Vibrio parahaemolyticus is a Gram-negative bacterium that is a natural inhabitant of the marine habitat. V. parahaemolyticus is a human foodborne pathogen linked to the consumption of contaminated raw and undercooked seafood. V. parahaemolyticus pathogenicity has been linked to the presence of two virulence gene that is thermostable direct hemolysin (tdh) and TDH-related hemolysin (trh). The emergence of antibiotic resistant strain of V. parahaemolyticus is a menace to public health. V. parahaemolyticus is linked to several foodborne diseases in Asian countries including Japan, China and Taiwan and has been acknowledged as the major cause of human gastroenteritis in the United States. The emergence of pathogenic Vibrio species in shellfish in Malaysia requires persistent monitoring and public enlightenment on food safety. Several detection methods based on its virulence factors are used in detecting V. parahaemolyticus. This review will provide an insight on V. parahaemolyticus, its pathogenicity, antibiotic resistance, foodborne outbreaks and detection methods.


2020 ◽  
Vol 139 ◽  
pp. 153-160
Author(s):  
S Peeralil ◽  
TC Joseph ◽  
V Murugadas ◽  
PG Akhilnath ◽  
VN Sreejith ◽  
...  

Luminescent Vibrio harveyi is common in sea and estuarine waters. It produces several virulence factors and negatively affects larval penaeid shrimp in hatcheries, resulting in severe economic losses to shrimp aquaculture. Although V. harveyi is an important pathogen of shrimp, its pathogenicity mechanisms have yet to be completely elucidated. In the present study, isolates of V. harveyi were isolated and characterized from diseased Penaeus monodon postlarvae from hatcheries in Kerala, India, from September to December 2016. All 23 tested isolates were positive for lipase, phospholipase, caseinase, gelatinase and chitinase activity, and 3 of the isolates (MFB32, MFB71 and MFB68) showed potential for significant biofilm formation. Based on the presence of virulence genes, the isolates of V. harveyi were grouped into 6 genotypes, predominated by vhpA+ flaB+ ser+ vhh1- luxR+ vopD- vcrD+ vscN-. One isolate from each genotype was randomly selected for in vivo virulence experiments, and the LD50 ranged from 1.7 ± 0.5 × 103 to 4.1 ± 0.1 × 105 CFU ml-1. The expression of genes during the infection in postlarvae was high in 2 of the isolates (MFB12 and MFB32), consistent with the result of the challenge test. However, in MFB19, even though all genes tested were present, their expression level was very low and likely contributed to its lack of virulence. Because of the significant variation in gene expression, the presence of virulence genes alone cannot be used as a marker for pathogenicity of V. harveyi.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cristina Bacian ◽  
Cristobal Verdugo ◽  
Katherine García ◽  
Josu Perez-Larruscain ◽  
Ignacio de Blas ◽  
...  

Vibrio parahaemolyticus is the leading cause of seafood-associated bacterial gastroenteritis worldwide. Although different studies have focused on its pattern of variation over time, knowledge about the environmental factors driving the dynamics of this pathogen, within the Chilean territory, is still lacking. This study determined the prevalence of total and pathogenic V. parahaemolyticus strains (tdh and/or trh genes) in mussels (Mytilus chilensis) collected from two natural growing areas between 2017 and 2018, using selective agar and PCR analysis. V. parahaemolyticus was detected in 45.6% (93/204) of pooled samples from the Valdivia River Estuary. The pathogenic strains carrying the tdh and/or trh gene were detected in 11.8% (24/204): tdh in 9.8% (20/204), trh in 0.5% (1/204), and 1.5% (3/204) presented both genes. In Reloncaví Fjord, V. parahaemolyticus was detected in 14.4% (30/209) of the samples, pathogenic V. parahaemolyticus carrying the trh gene was detected in 0.5% (1/209) of the samples, while the tdh gene was not detected in the samples from this area. The total count of mauve-purple colonies typical of V. parahaemolyticus on CHROMagar was positively associated by multivariate analysis with area, water temperature, and salinity. Similarly, V. parahaemolyticus detection rates by PCR had a positive correlation with the area and water temperature. The chances of detecting total V. parahaemolyticus in the Valdivia River Estuary are significantly higher than in the Reloncaví Fjord, but inversely, during spring-summer months, the interaction factor between the area and temperature indicated that the chances of detecting V. parahaemolyticus are higher in the Reloncaví Fjord. Interestingly, this period coincides with the season when commercial and natural-growing shellfish are harvested. On the other hand, pathogenic V. parahaemolyticus tdh+ was significantly correlated with an increase of water temperature. These environmental parameters could be used to trigger a warning on potential hazard, which would influence human health and economic losses in aquaculture systems.


2019 ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul B.M.M.K. Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus , carrying the pir A and pir B toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp ( Peneaus monodon ) of south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh , AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pir A and pir B. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


2018 ◽  
Vol 81 (7) ◽  
pp. 1117-1125 ◽  
Author(s):  
MENGZHE LI ◽  
YANQIU JIN ◽  
HONG LIN ◽  
JINGXUE WANG ◽  
XIUPING JIANG

ABSTRACT Vibrio parahaemolyticus is an important foodborne pathogen that is generally transmitted via raw or undercooked seafood. Endolysins originating from bacteriophages offer a new way to control bacterial pathogens. The objectives of this study were to sequence a novel lytic V. parahaemolyticus phage VPp1 and determine the antibacterial activities of the recombinant endolysin (LysVPp1) derived from this phage. The complete VPp1 genome contained a double-stranded DNA of 50,431 bp with a total G+C content of 41.35%. The genome was predicted to encode 67 open reading frames (ORFs), which were organized as nucleotide metabolism, replication, structure, packaging, lysis, and some additional functions. Two tRNAs were encoded to carry anticodons UGG and CCA. Among the functional proteins, ORF33 was deduced to encode endolysin, whereas no holin/antiholin or Rz/Rz1 lysis gene equivalents were found in the VPp1 genome. ORF33 was cloned and expressed. The endolysin LysVPp1 could lyse 9 of 12 V. parahaemolyticus strains, showing its relatively broader host spectrum than phage VPp1, which lysed only 3 of 12 V. parahaemolyticus strains. Furthermore, for EDTA-pretreated bacterial cells, the optical density of the LysVPp1 treatment group decreased by 0.4 at 450 nm, compared with less than 0.1 in control groups, demonstrating enhanced hydrolytic properties. These results contribute to the potential for development of novel enzybiotics for controlling V. parahaemolyticus.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Shawon Ahmmed ◽  
Md. Abdullah-Al-Kamran Khan ◽  
Md. Mostavi Enan Eshik ◽  
Nusrat Jahan Punom ◽  
Abul Bashar Mir Md. Khademul Islam ◽  
...  

Abstract Background Due to its rapid lethal effect in the early development stage of shrimp, acute hepatopancreatic necrosis disease (AHPND) has been causing great economic losses, since its first outbreak in southeast China in 2009. Vibrio parahaemolyticus, carrying the pirA and pirB toxin genes is known to cause AHPND in shrimp. The overall objective of this study was to sequence the whole genome of AHPND positive V. parahaemolyticus strains isolated from shrimp (Peneaus monodon) of the south-west region of Bangladesh in 2016 and 2017 and characterize the genomic features and emergence pattern of this marine pathogen. Results Two targeted AHPND positive V. parahaemolyticus strains were confirmed using PCR with 16S rRNA, ldh, AP3 and AP4 primers. The assembled genomes of strain MSR16 and MSR17 were comprised of a total of 5,393,740 bp and 5,241,592 bp, respectively. From annotation, several virulence genes involved in chemotaxis and motility, EPS type II secretion system, Type III secretion system-1 (T3SS-1) and its secreted effectors, thermolabile hemolysin were found in both strains. Importantly, the ~ 69 kb plasmid was identified in both MSR16 and MSR17 strains containing the two toxin genes pirA and pirB. Antibiotic resistance genes were predicted against β-lactam, fluoroquinolone, tetracycline and macrolide groups in both MSR16 and MSR17 strains. Conclusions The findings of this research may facilitate the tracking of pathogenic and/or antibiotic-resistant V. parahaemolyticus isolates between production sites, and the identification of candidate strains for the production of vaccines as an aid to control of this devastating disease. Also, the emergence pattern of this pathogen can be highlighted to determine the characteristic differences of other strains found all over the world.


1986 ◽  
Vol 49 (8) ◽  
pp. 643-646 ◽  
Author(s):  
CARLOS ABEYTA ◽  
CHARLES A. KAYSNER ◽  
MARLEEN M. WEKELL ◽  
JOHN J. SULLIVAN ◽  
GERARD N. STELMA

Potentially pathogenic Aeromonas hydrophila organism were isolated from oysters frozen at −72°C for 1–1/2 years. The oysters which had been associated with 472 cases of gastroenteritis in Louisiana in November 1982, were examined and found negative for Salmonella, pathogenic Vibrio parahaemolyticus, and diarrhetic shellfish poison. In 1983, oysters from the same shellfish growing area in Louisiana were implicated in seven cases of gastroenteritis caused by A. hydrophila. The oysters collected in 1982 were reexamined and found to contain A. hydrophila (MPN 9.3/100 g). Twenty-three of 28 strains identified by the MICRO-IS and API-20E systems were positive for at least one of the tests for virulence which included the suckling mouse test, the adrenal Y-1 mouse cell test, and hemolysin assays. Of five strains tested, all showed activity in the rabbit ileal loop. Although these results do not prove that A. hydrophila caused the outbreak in 1982, they suggest that in cases of foodborne illness involving oysters, A. hydrophila should be included in the screening tests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu He ◽  
Shuai Wang ◽  
Kaiwen Wang ◽  
Jinwei Zhou ◽  
Zhi Han ◽  
...  

Vibrio parahaemolyticus uses bacterial secretion systems and integrative and conjugative elements (ICEs) to induce various diseases and to adapt to harsh environments, respectively. Information pertaining to the identity of secreted proteins and functional characterization of ICEs has been previously reported, but the relationship between these elements remains unclear. Herein we investigated secreted proteins of V. parahaemolyticus strains JHY20 and JHY20△ICE using two-dimensional gel electrophoresis and LC-MS/MS, which led to the identification of an ICE-associated secreted protein – dihydrolipoamide dehydrogenase (DLDH). Considering the data related to its physical and biochemical characterization, we predicted that DLDH is a novel immunogenic protein and associated with virulence in JHY20. Our findings indicate a potential relationship between ICE-associated transport and secreted proteins and shed light on the function of such transport mechanisms. We believe that our data should enhance our understanding of mobile genetic elements.


Sign in / Sign up

Export Citation Format

Share Document