AN ANALYSIS ON THE MEASUREMENT OF THE YOUNG MODULUS FOR COMPOSITE MATERIALS AND ITS EFFECT ON PIPE REPAIR SYSTEMS

Author(s):  
Camila Ranucci de Luca ◽  
João Fellipe Souza ◽  
Paulo Torres ◽  
Heraldo da Costa Mattos

Fully alined long chain polymers would have a Young modulus in the alinement direction similar to that of steel. Practically available polymeric materials have moduli less than one-tenth, and usually less than one-fiftieth of this, even with a high degree of molecular alinement. The paradox is of course resolved in principle by recognizing the predominance of chain folding in polymer crystallization, which allows strong alinement to occur with little or no extended chain continuity in the alinement direction. Questions which arise from this are: (1) what are the actual mechanisms of compliance in the material of relatively low modulus? and (2) by what means may it be possible to achieve full extension and alinement of a high proportion of the chains? Some tentative answers can be given in the light of current researches. Fully extended alinement for a small proportion is obtainable. Extension of a substantial proportion, rather than all, is the desideratum, since the folded chains con­tribute toughness. It can be useful to think of polymers as intrinsically composite materials, even when chemically homogeneous.


Author(s):  
Chris Alexander ◽  
Jim Souza ◽  
Casey Whalen

For the better part of the past 20 years composite materials have been used to repair damaged piping and pressurized components in plants, refineries, and pipelines. The use of composite materials has been accompanied by comprehensive research programs focused on the development and assessment of using composite technology for restoring integrity to damaged piping and pressurized components. Of particular interest are composite repair standards such as ISO 24817 and ASME PCC-2 that provide technical guidance in how to properly design composite repair systems. The vast body of research completed to date has involved assessments at ambient conditions; however, at the present time there is significant interest in evaluating the performance of composite repair materials at elevated temperatures. This paper is focused on the topic of high temperature composite repairs and addresses the critical role of utilizing temperature-based mechanical properties to establish a composite repair design. The backbone of this effort is the development of composite performance curves that correlate change in strength as a function of temperature. A discussion on supporting full-scale pressure test results are included, along with guidance for users in how to properly design composite repair systems for applications at elevated temperatures.


2021 ◽  
Vol 1035 ◽  
pp. 870-877
Author(s):  
Lian Xun Ming ◽  
Deng Zun Yao ◽  
Bin Chen ◽  
Zhen Heng Teng ◽  
Lin Wang

Composite repair systems of buried pipeline will be affected by moisture and other factors due to anti-corrosion and construction problems. These environmental factors will reduce the service life of the composite system. In this paper, the performance of composite and interface between composite and steel under the action of water were studied. It was found that the formation of micro-cracks on the surface of composite materials and the hydrolysis of epoxy resin were the important reasons for the Performance degradation. Moreover, the aging properties of composite materials and their interfaces under water immersion were analyzed by residual strength theory, and the life prediction equation of composite materials and interfaces were obtained, which can be useful to the field application of composite repair systems.


Author(s):  
Chris Alexander ◽  
Carl Brooks

Composite materials are widely recognized as a resource for repairing damaged pipelines. The fibers in conventional composite repair systems typically incorporate E-glass and carbon materials. To provide greater levels of reinforcement a system was developed that incorporates steel half shells and an E-glass composite repair system. In comparison with other competing composite technologies, the hybrid system has a significant capacity to reduce strain in corroded pipeline to a level that has not been seen previously. Specifically, the hybrid system was used to reinforce a pipe sample having 75% corrosion subjected to cyclic pressure at 36% SMYS. This sample cycled 767,816 times before a leak failure developed. Furthermore, recent testing has demonstrated that the hybrid system actually places the pipeline in compression during installation. This paper will provide results on a series of specifically-designed tests to evaluate the performance of the hybrid system and the implications in relation to the service of actual pipelines.


Author(s):  
Chris Alexander ◽  
Julian Bedoya

For the better part of the past 15 years composite materials have been used to repair corrosion in high pressure gas and liquid transmission pipelines. This method of repair is widely accepted throughout the pipeline industry because of the extensive evaluation efforts performed by composite repair manufacturers, operators, and research organizations. Pipeline damage comes in different forms, one of which involves dents that include plain dents, dents in girth welds and dents in seam welds. An extensive study has been performed over the past several years involving multiple composite manufacturers who installed their repair systems on the above mentioned dent types. The primary focus of the current study was to evaluate the level of reinforcement provided by composite materials in repairing dented pipelines. The test samples were pressure cycled to failure to determine the level of life extension provided by the composite materials relative to a set of unrepaired test samples. Several of the repaired dents in the study did not fail even after 250,000 pressure cycles were applied at a range of 72% SMYS. The results of this study clearly demonstrate the significant potential that composite repair systems have, when properly designed and installed, to restore the integrity of damaged pipelines to ensure long-term service.


Author(s):  
Julian Bedoya ◽  
Chris Alexander ◽  
Tommy Precht

Pipelines and piping frequently suffer from metal loss that threatens their integrity and serviceability. Multiple repair options exist for straight sections of pipe; however, repair options for pipe fittings such as elbows and tees are typically limited to composite repair systems, or section replacement. The latter method can be costly as it often requires at least a partial shut down of the pipeline while the section is replaced. A composite repair system however, can be performed in place during operations at a greatly reduced cost. The main challenge with the composite repair system is the required demonstrated ability to restore integrity and serviceability to the same level as the original metal system. Over the past 10 years, Stress Engineering Services, Inc. has been greatly involved in evaluating the ability of many composite repair systems to restore the original pipeline structural integrity by testing methods and analysis methods. The current paper investigated the ability of the Armor Plate Pipe Wrap (APPW) system to restore the burst pressure of tee and elbow pipe fittings with 60% metal loss to that of a nominal thickness system. In this program four full scale burst tests were conducted: on 12-inch nominal pipe size (NPS) Y52 tee and elbow pipe fittings. All four fittings had 60% metal loss; two were repaired with APPW, and the other two were not repaired. Prior to burst testing, elastic plastic finite element analyses (FEA) were performed to adequately size the repair thickness. The results of the FEA calculations predicted the restoration of the burst pressures of the repaired fittings up to a 1.6% agreement with the actual burst pressure results. Furthermore, the burst pressure of the 60% metal loss tee was increased from 3,059 psi (unrepaired) to 4,617 psi, or a 51% improvement. The burst pressure of the 60% metal loss elbow was increased from 2,610 psi to 4,625 psi, or a 77% improvement. Both the analysis and testing results demonstrated that composite materials can restore the pressure integrity of corroded tee and elbow pipe fittings.


Author(s):  
Chris Alexander ◽  
Jim Souza

In response to inquiries from pipeline operators regarding the long-term performance of composite materials, manufacturers have performed additional tests to evaluate the performance of their composite repair systems. Insights were gained through these additional tests that demonstrated the long-term worthiness of the composite system. Of particular importance were two types of tests. The first involved the application of strain gages between layers of the composite repair system that was used to reinforce a corroded pipe test sample. As the sample was pressurized the strain gages permitted a comparison between the measured values and design stresses per the ASME PCC-2 design code. The second series of tests involved pressure cycling a 75% corroded sample to failure. In addition to the inter-layer strain measurements, the pressure cycling provides an important insight regarding the long-term performance of the composite repair. This paper addresses how the ASME PCC-2 Code, along with additional well-designed tests, can be used to design a composite repair system to ensure that it adequately reinforces a given defect. As composite materials are being used to repair pipeline anomalies beyond the corrosion-only defects, it is essential that pipeline operators utilize a systematic approach for ensuring the long-term performance of composite repair systems.


2016 ◽  
Vol 1 ◽  
Author(s):  
Sparisoma Viridi

Composite materials have been investigated elsewhere. Most of the studies are based on experimental results. This paper reports a numerical study of elasticity modulus of binary fiber composite materials. In this study, we use binary fiber composite materials model which consists of materials of types A and B. The composite is simplified into compound of non-interacting parallel sub-fibers. Each sub-fiber is modeled as <em>N<sub>s</sub></em> point of masses in series configuration. Two adjacent point of mass is connected with spring constant <em>k</em> (related and proportional to Young modulus <em>E</em>), where it could be <em>k</em><sub>AA</sub>, <em>k</em><sub>AB</sub>, or k<sub>BB</sub> depend on material type of the two point of masses. Three possible combinations of spring constant are investigated: (a) [<em>k</em><sub>AB</sub> &lt; min(<em>k</em><sub>AA</sub>, <em>k</em><sub>BB</sub>)], (b) [min(<em>k</em><sub>AA</sub>, <em>k</em><sub>BB</sub>) &lt; <em>k</em><sub>AB</sub> &lt; max(<em>k</em><sub>AA</sub>, <em>k</em><sub>BB</sub>)], and (c) [max(<em>k</em><sub>AA</sub>, <em>kBB</em>) &lt; <em>k</em><sub>AB</sub>]. The combinations are labeled as composite type I, II, and III, respectively. It is observed that only type II fits most the region limited by Voight and Reuss formulas.


Author(s):  
Colton Sheets ◽  
Robert Rettew ◽  
Chris Alexander ◽  
Denis Baranov ◽  
Patrick Harrell

Over the past two decades, a significant amount of research has been conducted on the use of composite materials for the repair and reinforcement of pipelines. This has led to vast improvements in the quality of composite systems used for pipeline repair and has increased the range of applications for which they are viable solutions (including corrosion and mechanical damage). By using composite repair systems, pipeline operators are often able to restore the structural integrity of damaged pipelines to levels equal to or even in excess of the original undamaged pipe. Although this research has led to substantial advancements in the quality of these repair systems, there are still specific applications where questions remain regarding the strength, durability, and effectiveness of composite repair systems, especially in elevated temperature, harsh environment conditions. This program initially involved composite repair systems from six manufacturers. The test group included both carbon and E-glass based systems. Performance based qualifications were used to reduce the size of the test group from the initial six systems down to three. The experimental study consisted of small-scale testing efforts that ranged from tensile tests performed over a range of temperatures to 10,000-hour material coupon tests at elevated temperatures. The elevated temperatures used for testing were intentionally selected by the operator to reflect the 248 °F design temperature of the target pipeline. Using small-scale qualification testing outlined in ASME PCC-2 – Repair of Pressure Equipment and Piping standard (Article 4.1, Nonmetallic Composite Repair Systems: High-Risk Applications) as a foundation, the test program described in this paper was able to demonstrate that, when properly designed, and installed, some composite materials are able to maintain their effectiveness at high temperatures. This study combined short-term and long-term testing of composite systems and demonstrated the advantages of a 10,000 hour test when aging properties are unknown. Finally, the study showed that, although high-temperature reinforcement using composite repair systems is feasible and commercially available, this capability is not standard practice across the composite repair industry. Proper analysis and verification using experimental methods, including full scale testing should be conducted prior to installation of a composite repair system in these types of harsh conditions.


Author(s):  
Chris Alexander

For the better part of the past 15 years composite materials have been used to repair corrosion in high pressure gas and liquid transmission pipelines. This method of repair is widely accepted throughout the pipeline industry because of the extensive evaluation efforts performed by composite repair manufacturers, operators, and research organizations. Pipeline damage comes in different forms, one of which involves dents that include plain dents, dents in girth welds and seam welds. An extensive study has been performed over the past several years involving multiple composite manufacturers that installed their repair systems on the above mentioned dent types. The test samples were pressure cycled to failure to determine the level of life extension provided by the composite materials over a set of unrepaired test samples. Several of the repaired dents in the study did not fail even after 250,000 pressure cycles had been applied at a range of 72% SMYS. The primary purpose of this paper is to present details on how Stress Intensification Factors were derived using the empirically-generated data. The results of this study clearly demonstrate the significant potential that composite repair systems have, when properly designed and installed, to restore the integrity of damaged pipelines and piping systems to ensure long-term service.


Sign in / Sign up

Export Citation Format

Share Document