INFLUENCE OF CUTTING FLUID TYPE ON CUTTING REGION TEMPERATURE DURING GRINDING OF BEARING STEEL

Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo Ruzzi ◽  
Felipe dos Anjos Rodrigues Campos ◽  
Marcelo Kuroda ◽  
Rodolfo Oliveira ◽  
...  
Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva

The elevated heat generation in grinding can develop high temperatures at the contact zone, which can adversely affect the surface integrity of the workpiece, especially when grinding hardened steels with conventional abrasives. Thus, the correct selection of cooling-lubrication condition is essential to avoid or attenuate any possible negative effect to workpiece surface integrity. However, the literature lacks work comparing different cutting fluid application technique (e.g. flood and minimum quantity lubrication – MQL) using the same fluid on both techniques. In this context, this work aims to contribute to the selection of cutting fluid type and its application technique for the grinding of bearing steel. Experimental trials were conducted comparing the use of semisynthetic and synthetic cutting fluids, both applied via conventional (flood) and MQL techniques. Different cutting conditions were also tested. A 24 full factorial design of experiment (DOE) was carried out with the following factors: fluid application technique, type of fluid, workspeed, and radial depth of cut. An analysis of main effects and interactions was performed for surface finish (Ra parameter) results, including a prediction model based on the analysis of variance (ANOVA). The morphology of ground surface and microhardness below machined surface were also analyzed. The results showed that the ground surface finish was strongly dependent on the cutting fluid type and its application technique combination: superior finishing was observed with the combination of semisynthetic fluid delivered via flood technique and with synthetic fluid delivered via MQL technique. From the surface morphology analysis, it was observed that the inferior lubrication capacity of synthetic fluid applied via flood condition deteriorated the surface finish and morphology. The surfaces ground with semisynthetic fluid provided, in general, lower values of Ra and lower microhardness variation. The prediction model for Ra showed a maximum error of 14% in comparison to the measured values.


2012 ◽  
Vol 504-506 ◽  
pp. 1335-1340 ◽  
Author(s):  
Giuseppina Ambrogio ◽  
Serena di Renzo ◽  
Francesco Gagliardi ◽  
Domenico Umbrello

This paper presents a study of the influence of cutting conditions on the finished surface obtained after an hard turning process, in particular a case study is presented where AISI 52100 bearing steel is machined under different cutting conditions. An analysis carried out using Surface Response Methodology has been developed in order to study the influence of the main cutting parameters such as cutting speed, feed rate and workpiece initial hardness on white (WL) and dark layer (DL) thickness. The whole experimental campaign has been performed using a chamfered PCBN tool inserts without any cutting fluid. Results show an evident influence of cutting speed and feed rate on both white and dark layer thickness while less relevant is the contribute given from the workpiece hardness on defining WL and DL depth. Finally, a model to find the optimal process conditions to minimize white and dark layer thickness is developed.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1660
Author(s):  
Raphael Lima de Paiva ◽  
Rodrigo de Souza Ruzzi ◽  
Rosemar Batista da Silva

The use of cutting fluid is crucial in the grinding process due to the elevated heat generated during the process which typically flows to the workpiece and can adversely affect its integrity. Considering the conventional technique for cutting fluid application in grinding (flood), its efficiency is related to certain factors such as the type of fluid, nozzle geometry/positioning, flow rate and coolant concentration. Another parameter, one which is usually neglected, is the cutting fluid temperature. Since the heat exchange between the cutting fluid and workpiece increases with the temperature difference, controlling the cutting fluid temperature before its application could improve its cooling capability. In this context, this work aimed to analyze the surface integrity of bearing steel (hardened SAE 52100 steel) after grinding with an Al2O3 grinding wheel with the cutting fluid delivered via flood technique at different temperatures: 5 °C, 10 °C, 15 °C as well as room temperature (28 ± 1 °C). The surface integrity of the workpiece was analyzed in terms of surface roughness (Ra parameter), images of the ground surface, and the microhardness and microstructure beneath the machined surface. The results show that the surface roughness values reduced with the cutting fluid temperature. Furthermore, the application of a cutting fluid at low temperatures enabled the minimization of thermal damages regarding visible grinding burns, hardness variation, and microstructure changes.


2017 ◽  
Vol 261 ◽  
pp. 201-206
Author(s):  
Nikolaos E. Karkalos ◽  
Angelos P. Markopoulos

Metal cutting processes such as machining or abrasive processes are related to the production of relatively large amounts of heat, as a result of the intense contact of workpiece and cutting tool. For that reason, it is often necessary to employ a cooling fluid in order to alleviate the intense and usually undesired heat-induced effects on the workpiece. Due to the cost and environmental concerns regarding cutting fluids, the heat absorbing efficiency and quantity of cutting fluids employed is always a concern. In the present work, the effect of cutting fluid type in the temperature profile of the workpiece during grinding is investigated and useful conclusions are drawn, concerning the efficiency of nanofluids as cutting fluids.


1982 ◽  
Vol 61 (7-8) ◽  
pp. 42
Author(s):  
Geoff Rowe
Keyword(s):  

Author(s):  
A.M. Zetty Akhtar ◽  
M.M. Rahman ◽  
K. Kadirgama ◽  
M.A. Maleque

This paper presents the findings of the stability, thermal conductivity and viscosity of CNTs (doped with 10 wt% graphene)- TiO2 hybrid nanofluids under various concentrations. While the usage of cutting fluid in machining operation is necessary for removing the heat generated at the cutting zone, the excessive use of it could lead to environmental and health issue to the operators. Therefore, the minimum quantity lubrication (MQL) to replace the conventional flooding was introduced. The MQL method minimises the usage of cutting fluid as a step to achieve a cleaner environment and sustainable machining. However, the low thermal conductivity of the base fluid in the MQL system caused the insufficient removal of heat generated in the cutting zone. Addition of nanoparticles to the base fluid was then introduced to enhance the performance of cutting fluids. The ethylene glycol used as the base fluid, titanium dioxide (TiO2) and carbon nanotubes (CNTs) nanoparticle mixed to produce nanofluids with concentrations of 0.02 to 0.1 wt.% with an interval of 0.02 wt%. The mixing ratio of TiO2: CNTs was 90:10 and ratio of SDBS (surfactant): CNTs was 10:1. The stability of nanofluid checked using observation method and zeta potential analysis. The thermal conductivity and viscosity of suspension were measured at a temperature range between 30˚C to 70˚C (with increment of 10˚C) to determine the relationship between concentration and temperature on nanofluid’s thermal physical properties. Based on the results obtained, zeta potential value for nanofluid range from -50 to -70 mV indicates a good stability of the suspension. Thermal conductivity of nanofluid increases as an increase of temperature and enhancement ratio is within the range of 1.51 to 4.53 compared to the base fluid. Meanwhile, the viscosity of nanofluid shows decrements with an increase of the temperature remarks significant advantage in pumping power. The developed nanofluid in this study found to be stable with enhanced thermal conductivity and decrease in viscosity, which at once make it possible to be use as nanolubricant in machining operation.


Author(s):  
A. Pandey ◽  
R. Kumar ◽  
A. K. Sahoo ◽  
A. Paul ◽  
A. Panda

The current research presents an overall performance-based analysis of Trihexyltetradecylphosphonium Chloride [[CH3(CH2)5]P(Cl)(CH2)13CH3] ionic fluid mixed with organic coconut oil (OCO) during turning of hardened D2 steel. The application of cutting fluid on the cutting interface was performed through Minimum Quantity Lubrication (MQL) approach keeping an eye on the detrimental consequences of conventional flood cooling. PVD coated (TiN/TiCN/TiN) cermet tool was employed in the current experimental work. Taguchi’s L9 orthogonal array and TOPSIS are executed to analysis the influences, significance and optimum parameter settings for predefined process parameters. The prime objective of the current work is to analyze the influence of OCO based Trihexyltetradecylphosphonium Chloride ionic fluid on flank wear, surface roughness, material removal rate, and chip morphology. Better quality of finish (Ra = 0.2 to 1.82 µm) was found with 1% weight fraction but it is not sufficient to control the wear growth. Abrasion, chipping, groove wear, and catastrophic tool tip breakage are recognized as foremost tool failure mechanisms. The significance of responses have been studied with the help of probability plots, main effect plots, contour plots, and surface plots and the correlation between the input and output parameters have been analyzed using regression model. Feed rate and depth of cut are equally influenced (48.98%) the surface finish while cutting speed attributed the strongest influence (90.1%). The material removal rate is strongly prejudiced by cutting speed (69.39 %) followed by feed rate (28.94%) whereas chip reduction coefficient is strongly influenced through the depth of cut (63.4%) succeeded by feed (28.8%). TOPSIS significantly optimized the responses with 67.1 % gain in closeness coefficient.


Author(s):  
Gustavo Fernandes ◽  
Sanderson Clayton ◽  
Bernardo Jakitsch ◽  
Luis Henrique Andrade Maia ◽  
Mariana Gomes ◽  
...  

Author(s):  
Eder Silva Costa ◽  
Pedro Henrique Pires França ◽  
Leonardo Rosa Ribeiro da Silva ◽  
Wisley Sales ◽  
Álisson Rocha Machado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document