scholarly journals Late Cenozoic (13-0 Myr) Glacimarine Sedimentology, Facies Analysis, and Sequence  Stratigraphy from the Western Ross Embayment, Antarctica: Implications for the Variability of the Antarctic Ice Sheets

2021 ◽  
Author(s):  
◽  
Robert Murray McKay

<p>Sedimentary processes related to oscillations of the marine-based sector of Antarctic Ice Sheet (AIS) in the Ross Embayment over the past 13 Myr are examined at various timescales from stratigraphic records of glacial advance and retreat obtained from the McMurdo Sound region. An initial sedimentary model was developed from short (<2 m) sediment cores collected from beneath the present-day McMurdo Ice Shelf and seasonally open water in the Ross Island region. These cores document sedimentary processes associated with subglacial, ice shelf and open marine environments since the Last Glacial Maximum (LGM) in the Ross Sea Embayment. A radiocarbon chronology from these short cores implies that lift-off of grounded ice in the 900 m-deep marine basins surrounding Ross Island occurred by ~10,100 14C yr BP. Following lift-off, the ice shelf calving line retreated toward its present position. By ~8,900 14C yr BP, seasonally open marine conditions extended as far south as Ross Island. Glacial retreat was rapid and preceded the timing of Meltwater Pulse 1B. Since 8,900 14C yr BP, the calving line of the Ross Ice Shelf has remained pinned to Ross Island despite warmer-than-present temperatures during the mid-Holocene. Depositional models developed for the LGM to recent sediments were then applied to the interpretation of the 1284-m-long ANDRILL McMurdo Ice Shelf core (AND-1B) to documenting oscillations of the AIS in the Ross Embayment over the past 13 Myr. A sequence stratigraphic framework for grounding-line fluctuations of under a variety of glacial regimes, with three distinct types of glacimarine cycle (sequence motif) identified. Motif 1 (Pleistocene and Mid to early Late Miocene) is dominated by thick sub-glacial diamictite, deposited during glacial advance, with occasional thin interbeds of sparsely- to non-fossiliferous mudstone that marks an ice shelf setting during interglacial maxima. Motif 2 (Pliocene) comprises subglacial to glacimarine diamictite overlain by thin, proglacial deposits and capped with substantial beds of diatom-bearing mudstone or diatomite formed under open-marine conditions. Motif 3 (Late Miocene) extends from subglacial diamictite into a thick proglacial succession that includes a combination of stratified diamictite, graded sandstone, conglomerate, and rhythmically-stratified mudstone. The differences in these facies successions (motifs) are associated with the long-term evolution of the AIS in the Ross Embayment from a cold glacial regime with limited volumes of subglacial meltwater (Motif 1) to warmer styles (Motifs 2 and 3) of glaciation with increased subglacial meltwater discharge, before passing back to the cold style of glaciation that characterises the present-day AIS (i.e., limited subglacial meltwater). Each motif was interpreted on the basis of modern analogues of glacimarine sedimentation from a range of climatic/glacial settings, recording a fundamental change in the mass balance for the AIS in the Ross Embayment. For cold glacial regimes similar to the present day Antarctic Ice Sheets, ablation was largely controlled by calving at the marine margin and the melting of the underside of ice shelves by oceanic processes. For warmer regimes, in particular for Motif 3, ablation by melting was a significant influence on mass balance. This sedimentary model was then applied in detail to interpret the Pleistocene section of AND-1B (upper 150 m) with a chronostratigraphic interpretation constrained by sequence stratigraphy, 40Ar/39Ar dating of volcanic ashes, and magneto-stratigraphy. The glacimarine sequences in AND-1B drill core correlate one-to-one with cycles in the benthic delta 18 O record for the past ~0.8 Myr (Marine Isotope Stages 20-2), and are interpreted as recording fluctuations of the AIS in the Ross Embayment with a 100-kyr cyclicity. In this "100-kyr world", the AIS is relatively stable, with subglacial to grounding-zone sedimentation dominating at the AND-1B drill site, with only thin intervals of ice-shelf sedimentation during interglacials and little evidence for open-marine conditions during the Late Pleistocene "super-interglacials". An unconformity spans (~200 kyr) most of the Mid-Pleistocene Transition and is inferred to represent large scale expansion of AIS at ~0.8 Myr. Prior to this, Early Pleistocene glacial/interglacial cycles had a 40-kyr frequency, with interglacial periods characterised by open water deposits that contain volcanoclastic debris and diatomaceous sediments. This upper 150 m of AND-1B provides clear evidence for both a change in the frequency (40- to 100-kyr cycles), and a reduction in the sensitivity of a cooler marine-based AIS in the Ross Embayment.</p>

2021 ◽  
Author(s):  
◽  
Robert Murray McKay

<p>Sedimentary processes related to oscillations of the marine-based sector of Antarctic Ice Sheet (AIS) in the Ross Embayment over the past 13 Myr are examined at various timescales from stratigraphic records of glacial advance and retreat obtained from the McMurdo Sound region. An initial sedimentary model was developed from short (<2 m) sediment cores collected from beneath the present-day McMurdo Ice Shelf and seasonally open water in the Ross Island region. These cores document sedimentary processes associated with subglacial, ice shelf and open marine environments since the Last Glacial Maximum (LGM) in the Ross Sea Embayment. A radiocarbon chronology from these short cores implies that lift-off of grounded ice in the 900 m-deep marine basins surrounding Ross Island occurred by ~10,100 14C yr BP. Following lift-off, the ice shelf calving line retreated toward its present position. By ~8,900 14C yr BP, seasonally open marine conditions extended as far south as Ross Island. Glacial retreat was rapid and preceded the timing of Meltwater Pulse 1B. Since 8,900 14C yr BP, the calving line of the Ross Ice Shelf has remained pinned to Ross Island despite warmer-than-present temperatures during the mid-Holocene. Depositional models developed for the LGM to recent sediments were then applied to the interpretation of the 1284-m-long ANDRILL McMurdo Ice Shelf core (AND-1B) to documenting oscillations of the AIS in the Ross Embayment over the past 13 Myr. A sequence stratigraphic framework for grounding-line fluctuations of under a variety of glacial regimes, with three distinct types of glacimarine cycle (sequence motif) identified. Motif 1 (Pleistocene and Mid to early Late Miocene) is dominated by thick sub-glacial diamictite, deposited during glacial advance, with occasional thin interbeds of sparsely- to non-fossiliferous mudstone that marks an ice shelf setting during interglacial maxima. Motif 2 (Pliocene) comprises subglacial to glacimarine diamictite overlain by thin, proglacial deposits and capped with substantial beds of diatom-bearing mudstone or diatomite formed under open-marine conditions. Motif 3 (Late Miocene) extends from subglacial diamictite into a thick proglacial succession that includes a combination of stratified diamictite, graded sandstone, conglomerate, and rhythmically-stratified mudstone. The differences in these facies successions (motifs) are associated with the long-term evolution of the AIS in the Ross Embayment from a cold glacial regime with limited volumes of subglacial meltwater (Motif 1) to warmer styles (Motifs 2 and 3) of glaciation with increased subglacial meltwater discharge, before passing back to the cold style of glaciation that characterises the present-day AIS (i.e., limited subglacial meltwater). Each motif was interpreted on the basis of modern analogues of glacimarine sedimentation from a range of climatic/glacial settings, recording a fundamental change in the mass balance for the AIS in the Ross Embayment. For cold glacial regimes similar to the present day Antarctic Ice Sheets, ablation was largely controlled by calving at the marine margin and the melting of the underside of ice shelves by oceanic processes. For warmer regimes, in particular for Motif 3, ablation by melting was a significant influence on mass balance. This sedimentary model was then applied in detail to interpret the Pleistocene section of AND-1B (upper 150 m) with a chronostratigraphic interpretation constrained by sequence stratigraphy, 40Ar/39Ar dating of volcanic ashes, and magneto-stratigraphy. The glacimarine sequences in AND-1B drill core correlate one-to-one with cycles in the benthic delta 18 O record for the past ~0.8 Myr (Marine Isotope Stages 20-2), and are interpreted as recording fluctuations of the AIS in the Ross Embayment with a 100-kyr cyclicity. In this "100-kyr world", the AIS is relatively stable, with subglacial to grounding-zone sedimentation dominating at the AND-1B drill site, with only thin intervals of ice-shelf sedimentation during interglacials and little evidence for open-marine conditions during the Late Pleistocene "super-interglacials". An unconformity spans (~200 kyr) most of the Mid-Pleistocene Transition and is inferred to represent large scale expansion of AIS at ~0.8 Myr. Prior to this, Early Pleistocene glacial/interglacial cycles had a 40-kyr frequency, with interglacial periods characterised by open water deposits that contain volcanoclastic debris and diatomaceous sediments. This upper 150 m of AND-1B provides clear evidence for both a change in the frequency (40- to 100-kyr cycles), and a reduction in the sensitivity of a cooler marine-based AIS in the Ross Embayment.</p>


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2018 ◽  
Vol 857 ◽  
pp. 648-680 ◽  
Author(s):  
Samuel S. Pegler

A long-standing open question in glaciology concerns the propensity for ice sheets that lie predominantly submerged in the ocean (marine ice sheets) to destabilise under buoyancy. This paper addresses the processes by which a buoyancy-driven mechanism for the retreat and ultimate collapse of such ice sheets – the marine ice sheet instability – is suppressed by lateral stresses acting on its floating component (the ice shelf). The key results are to demonstrate the transition between a mode of stable (easily reversible) retreat along a stable steady-state branch created by ice-shelf buttressing to tipped (almost irreversible) retreat across a critical parametric threshold. The conditions for triggering tipped retreat can be controlled by the calving position and other properties of the ice-shelf profile and can be largely independent of basal stress, in contrast to principles established from studies of unbuttressed grounding-line dynamics. The stability and recovery conditions introduced by lateral stresses are analysed by developing a method of constructing grounding-line stability (bifurcation) diagrams, which provide a rapid assessment of the steady-state positions, their natures and the conditions for secondary grounding, giving clear visualisations of global stabilisation conditions. A further result is to reveal the possibility of a third structural component of a marine ice sheet that lies intermediate to the fully grounded and floating components. The region forms an extended grounding area in which the ice sheet lies very close to flotation, and there is no clearly distinguished grounding line. The formation of this region generates an upsurge in buttressing that provides the most feasible mechanism for reversal of a tipped grounding line. The results of this paper provide conceptual insight into the phenomena controlling the stability of the West Antarctic Ice Sheet, the collapse of which has the potential to dominate future contributions to global sea-level rise.


2021 ◽  
Author(s):  
◽  
Sanne M Maas

<p>Sediment Cores collected from the shallow sub-sea floor beneath the Ross Ice Shelf at Coulman High have been analysed using sedimentological techniques to constrain the retreat history of the Last Glacial Maximum (LGM) ice sheet in the Ross Embayment, and to determine when the modern-day calving line location of the Ross Ice Shelf was established. A characteristic vertical succession of facies was identified in these cores, that can be linked to ice sheet and ice shelf extent in the Ross Embayment. The base of this succession consists of unconsolidated, clast rich muddy diamicts, and is interpreted to be deposited subglacially or in a grounding line proximal environment on account of a distinct provenance in the clast content which can only be attributed to subglacial transport from the Byrd Glacier 400 km to the south of the drill site. This is overlain by a mud with abundant clasts, similar in character to a granulated facies that has been documented previously in the Ross Sea, and is interpreted as being a characteristic grounding line lift-o facies in a sub-ice shelf setting. These glacial proximal facies pass upward into a mud, which comprises three distinctive units. i) Muds with sub-mm scale laminae resulting from traction currents occurring near the grounding line in a sub-ice shelf environment overlain by, ii) muds with sub-mm scale laminae and elevated biogenic content (diatoms and foraminifera) and sand/gravel clasts, interpreted as being deposited in open water conditions, passing up into a iii) bioturbated mud, interpreted as being deposited in sub-ice shelf environment, proximal to the calving line. The uppermost facies consists of a 20 cm thick diatom ooze with abundant clasts and pervasive bioturbation, indicative of a condensed section deposited during periodically open marine conditions. During post-LGM retreat of the ice sheet margin in western Ross Sea, and prior to the first open marine conditions at Coulman High, it is hypothesized that the grounding and calving line were in relative close proximity to each other. As the calving line became "pinned" in the Ross Island region, the grounding line likely continued its retreat toward its present day location. New corrected radiocarbon ages on the foraminifera shells in the interval of laminated muds with clasts, provide some of the first inorganic ages from the Ross Sea, and strengthen inferences from previous studies, that the first open marine conditions in the vicinity of Ross Island were 7,600 14C yr BP. While retreat of the calving line south of its present day position is implied during this period of mid-Holocene warmth prior to its re-advance, at present it is not possible to constrain the magnitude of retreat or attribute this to climate change rather than normal calving dynamics.</p>


2019 ◽  
pp. 18-36
Author(s):  
I. V. Melekestsev

The review of the reconstructions of the eruptive activity of the Yellowstone Caldera Complex (YCC) in the USA allows to suggests three groups of arguments supporting that the “volcanic super-eruption of Yellowstone” is not likely to occur in the coming hundreds or thousands of years. First is the gradual weakening of the volcanic potential of the magmatic source (which is the frontal lobe of the magmatic super-flow, and not the mantle plume) during the last 2 million yeats. Second is the impact of the repeated occurrence of ice sheets in the YCC area during the past 640 thousand years. Finally, the equivalent super-eruption, in terms of energy released and the mass of exploded material, had already occurred at about 70 thousand years ago, and since that time, the YCC has passed from the volcanic to the hydrothermal evolutionary stage.


2018 ◽  
Author(s):  
Niall Gandy ◽  
Lauren J. Gregoire ◽  
Jeremy C. Ely ◽  
Christopher D. Clark ◽  
David M. Hodgson ◽  
...  

Abstract. Uncertainties in future sea level projections are dominated by our limited understanding of the dynamical processes that control instabilities of marine ice sheets. A valuable case to examine these processes is the last deglaciation of the British-Irish Ice Sheet. The Minch Ice Stream, which drained a large proportion of ice from the northwest sector of the British-Irish Ice Sheet during the last deglaciation, is well constrained, with abundant empirical data which could be used to inform, validate and analyse numerical ice sheet simulations. We use BISICLES, a higher-order ice sheet model, to examine the dynamical processes that controlled the retreat of the Minch Ice Stream. We simulate retreat from the shelf edge under constant "warm" surface mass balance and subshelf melt, to isolate the role of internal ice dynamics from external forcings. The model simulates a slowdown of retreat as the ice stream becomes laterally confined at a "pinning-point" between mainland Scotland and the Isle of Lewis. At this stage, the presence of ice shelves became a major control on deglaciation, providing buttressing to upstream ice. Subsequently, the presence of a reverse slope inside the Minch Strait produces an acceleration in retreat, leading to a "collapsed" state, even when the climate returns to the initial "cold" conditions. Our simulations demonstrate the importance of the Marine Ice Sheet Instability and ice shelf buttressing during the deglaciation of parts of the British-Irish Ice Sheet. Thus, geological data could be used to constrain these processes in ice sheet models used for projecting the future of our contemporary ice sheets.


Author(s):  
Kenneth M. Hinkel ◽  
Andrew W. Ellis

The cryosphere refers to the Earth’s frozen realm. As such, it includes the 10 percent of the terrestrial surface covered by ice sheets and glaciers, an additional 14 percent characterized by permafrost and/or periglacial processes, and those regions affected by ephemeral and permanent snow cover and sea ice. Although glaciers and permafrost are confined to high latitudes or altitudes, areas seasonally affected by snow cover and sea ice occupy a large portion of Earth’s surface area and have strong spatiotemporal characteristics. Considerable scientific attention has focused on the cryosphere in the past decade. Results from 2 ×CO2 General Circulation Models (GCMs) consistently predict enhanced warming at high latitudes, especially over land (Fitzharris 1996). Since a large volume of ground and surface ice is currently within several degrees of its melting temperature, the cryospheric system is particularly vulnerable to the effects of regional warming. The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) states that there is strong evidence of Arctic air temperature warming over land by as much as 5 °C during the past century (Anisimov et al. 2001). Further, sea-ice extent and thickness has recently decreased, permafrost has generally warmed, spring snow extent over Eurasia has been reduced, and there has been a general warming trend in the Antarctic (e.g. Serreze et al. 2000). Most climate models project a sustained warming and increase in precipitation in these regions over the twenty-first century. Projected impacts include melting of ice sheets and glaciers with consequent increase in sea level, possible collapse of the Antarctic ice shelves, substantial loss of Arctic Ocean sea ice, and thawing of permafrost terrain. Such rapid responses would likely have a substantial impact on marine and terrestrial biota, with attendant disruption of indigenous human communities and infrastructure. Further, such changes can trigger positive feedback effects that influence global climate. For example, melting of organic-rich permafrost and widespread decomposition of peatlands might enhance CO2 and CH4 efflux to the atmosphere. Cryospheric researchers are therefore involved in monitoring and documenting changes in an effort to separate the natural variability from that induced or enhanced by human activity.


Author(s):  
David J. A. Evans

To reconstruct the former extent and dynamics of ice sheets and glaciers requires a knowledge of process-form relationships that goes beyond individual landform types. Instead, glacial geomorphologists need to analyse large areas of glaciated terrain in a more holistic way, combining the whole range of glacial landforms and sediments to reconstruct glacier systems of the past, a subject now known as palaeoglaciology. ‘Glaciers of the past’ explains how the combination of aerial imagery and landform analysis is used in palaeoglaciological reconstruction. Increasingly powerful computers are making it possible to compile sophisticated numerical models that use our knowledge of glaciological processes and ice-core-derived palaeoclimate data to create three-dimensional glacier and ice sheet reconstructions.


1975 ◽  
Vol 14 (72) ◽  
pp. 407-420 ◽  
Author(s):  
Marith Jean Reheis

This study was undertaken to determine the sources of debris and methods of transportation and deposition in and on a small cirque glacier. Data were collected on the amount of debris, stone roundness, the presence of striations and polish, and till fabric. Lichenometry gave relative ages of the tills, and suggests that the Gannett Peak till is of at least three ages and probably overlies Audubon till.Debris originating from subglacial erosion can be differentiated from that from rockfall or avalanches on stone roundness, polish and striations. A maximum of 70% of the present glacial load derives from subglacial erosion, as compared to 88% during the Gannett Peak stade. Rockfall rates are 35-50 m3/year at present and were 290–485 m3/year during the Gannett Peak stade. Data on present-day processes and on the volume and age of Gannett Peak moraines can be used to make comparisons on present and past rates of denudation. The denudation rate in the cirque at present is 95–165 mm/1 000 year; in the past it was 4 920-8 160 mm/ 1 000 year. The denudation rate and the glacial effects on debris are comparable to rates from other glacial areas and effects on debris carried by valley glaciers and continental ice sheets.


1991 ◽  
Vol 15 ◽  
pp. 101-108 ◽  
Author(s):  
Colin Fox ◽  
Vernon A. Squire

The possibility of long-period ocean waves coupling to an ice shelf is investigated. A thick elastic plate model is used for the ice shelf with comparisons made to the simpler thin-plate model. The strain set up on the ice shelf by a normally incident single frequency ocean wave is calculated by completely solving the equations governing the velocity potential for such a system. In the absence of measurements on an ice shelf, existing measurements of long-period strain on an ice tongue are used to estimate the required incident amplitude in the open water to induce the observed oscillations. It is found that the height of seas required indicates that ocean wave driving is a plausible forcing mechanism for observed oscillations.


Sign in / Sign up

Export Citation Format

Share Document