scholarly journals Interactions between Sponges and the Water Column:  Nutrient Utilisation and Feeding by New Zealand  Subtidal Sponges

2021 ◽  
Author(s):  
◽  
Alejandra Perea-Blázquez

<p>Sponges are an important component of New Zealand subtidal communities and play many key functional roles in marine ecosystems, including competition for space, facilitating primary production, nutrient cycling, bioerosion, and interactions with the water column. Sponges are involved in the bidirectional movement of detritus, nutrients, micro-organisms and planktonic particles both to and from the benthos to the pelagic ecosystem, thereby affecting pelagic processes. As suspension-feeders, sponges are capable of filtering large volumes of water, and they depend on food that is suspended in the water column, meaning that their interaction with the water column is likely to be very important. The main goal of my research was to investigate the interactions between sponges and the water column and how this varies in relation to sponge characteristics, nutrient fluxes, seasonality and food supply. I studied the diet composition of 10 sponge species that are abundant and widely distributed along the south coast of Wellington, New Zealand. I found that the diet of the sponge species analysed comprised three types of picoplanktonic organisms: heterotrophic bacteria, Prochlorococcus, and Synechococcus. These micro-organisms (picoplankton) that sponges feed on are vital for benthic food webs because they are involved in the transformation and cycling process of dissolved inorganic nutrients before they become available to other marine organisms. The results from this thesis demonstrated that different sponge species have different retention efficiencies for different types of picoplankton and I propose that this suggests intra-phyletic food particle niche partitioning among sponges. While these findings support the partitioning of food resources between different co-existing sponge species, they also suggest that partitioning may not be essential for co-existence, as some species had similar retention efficiencies implying an overlap in resource use. By measuring rates of carbon assimilation in the form of planktonic food particles, combined with data on a number of characteristics of the sponge species analysed, I found that sponge assemblages play a key role in the transfer of energy from the water column to the benthos. The results from this thesis indicate that there is a wide range of food concentrations in the rocky reefs where the study species are living, over which retention rate, nutrient utilisation and carbon consumption varied temporally. This emphasises the importance of understanding temporal variation in productivity, and suggests that such variations are likely to have important implications for suspension-feeders. By integrating the feeding results with estimations of oxygen consumption rates, and the amount of carbon obtained from the different micro-organisms found in the water column, preliminary carbon budgets were created. These budgets were used to quantify the capacity of carbon obtained via heterotrophic suspension-feeding to support sponge metabolism, as well as infer the potential for this carbon to support other processes such as sponge growth and reproduction. Overall, this project was the first to consider the functional roles of sponges in New Zealand marine ecosystems and provided useful information on their ecological and biological importance. The large amounts of carbon that sponges transfer from the water column to the benthos, in conjunction with the other findings of my thesis, increase our understanding of the ecology of temperate sponges.</p>

2021 ◽  
Author(s):  
◽  
Alejandra Perea-Blázquez

<p>Sponges are an important component of New Zealand subtidal communities and play many key functional roles in marine ecosystems, including competition for space, facilitating primary production, nutrient cycling, bioerosion, and interactions with the water column. Sponges are involved in the bidirectional movement of detritus, nutrients, micro-organisms and planktonic particles both to and from the benthos to the pelagic ecosystem, thereby affecting pelagic processes. As suspension-feeders, sponges are capable of filtering large volumes of water, and they depend on food that is suspended in the water column, meaning that their interaction with the water column is likely to be very important. The main goal of my research was to investigate the interactions between sponges and the water column and how this varies in relation to sponge characteristics, nutrient fluxes, seasonality and food supply. I studied the diet composition of 10 sponge species that are abundant and widely distributed along the south coast of Wellington, New Zealand. I found that the diet of the sponge species analysed comprised three types of picoplanktonic organisms: heterotrophic bacteria, Prochlorococcus, and Synechococcus. These micro-organisms (picoplankton) that sponges feed on are vital for benthic food webs because they are involved in the transformation and cycling process of dissolved inorganic nutrients before they become available to other marine organisms. The results from this thesis demonstrated that different sponge species have different retention efficiencies for different types of picoplankton and I propose that this suggests intra-phyletic food particle niche partitioning among sponges. While these findings support the partitioning of food resources between different co-existing sponge species, they also suggest that partitioning may not be essential for co-existence, as some species had similar retention efficiencies implying an overlap in resource use. By measuring rates of carbon assimilation in the form of planktonic food particles, combined with data on a number of characteristics of the sponge species analysed, I found that sponge assemblages play a key role in the transfer of energy from the water column to the benthos. The results from this thesis indicate that there is a wide range of food concentrations in the rocky reefs where the study species are living, over which retention rate, nutrient utilisation and carbon consumption varied temporally. This emphasises the importance of understanding temporal variation in productivity, and suggests that such variations are likely to have important implications for suspension-feeders. By integrating the feeding results with estimations of oxygen consumption rates, and the amount of carbon obtained from the different micro-organisms found in the water column, preliminary carbon budgets were created. These budgets were used to quantify the capacity of carbon obtained via heterotrophic suspension-feeding to support sponge metabolism, as well as infer the potential for this carbon to support other processes such as sponge growth and reproduction. Overall, this project was the first to consider the functional roles of sponges in New Zealand marine ecosystems and provided useful information on their ecological and biological importance. The large amounts of carbon that sponges transfer from the water column to the benthos, in conjunction with the other findings of my thesis, increase our understanding of the ecology of temperate sponges.</p>


1987 ◽  
Vol 108 (2) ◽  
pp. 347-351 ◽  
Author(s):  
I. Ap Dbwi ◽  
D. B. Johnson ◽  
W. I. Kelso

SummarySheathed filamentous bacteria,Leptothrixspp. andGallionellaspp., were observed in ochre samples from sites in England and Wales.Thiobacillus ferrooxidanswas found in acidic samples (pH < 4·0) and in ochre from drainage water of near neutral pH suggesting that it can contribute to ochre formation over a wide range of drainage water pH, Heterotrophic bacteria capable of growing in artificial media of low pH and complexdegrading heterotrophic bacteria were also isolated. Some ochre deposits could be described as either pyritic or filamentous but the majority of samples fell between these extremes and had various combinations ofT. ferrooxidans, sheathed filamentous bacteria and other heterotrophic bacteria.


2008 ◽  
Vol 61 ◽  
pp. 362-367
Author(s):  
H.M. Harman ◽  
N.W. Waipara ◽  
C.J. Winks ◽  
L.A. Smith ◽  
P.G. Peterson ◽  
...  

Bridal creeper is a weed of natural and productive areas in the northern North Island of New Zealand A classical biocontrol programme was initiated in 20052007 with a survey of invertebrate fauna and pathogens associated with the weed in New Zealand Although bridal creeper was attacked by a wide range of generalist invertebrates their overall damage affected


1998 ◽  
Vol 519 ◽  
Author(s):  
L. Bergogne ◽  
S. Fennouh ◽  
J. Livage ◽  
C. Roux

AbstractBioencapsulation in sol-gel materials has been widely studied during the past decade. Trapped species appear to retain their bioactivity in the porous silica matrix. Small analytes can diffuse through the pores allowing bioreactions to be performed in-situ, inside the sol-gel glass. A wide range of biomolecules and micro-organisms have been encapsulated. The catalytic activity of enzymes is used for the realization of biosensors or bioreactors. Antibody-antigen recognition has been shown to be feasible within sol-gel matrices. Trapped antibodies bind specifically the corresponding haptens and can be used for the detection of traces of chemicals. Even whole cells are now encapsulated without any alteration of their cellular organization. They can be used for the production of chemicals or as antigens for immunoassays.


2001 ◽  
Vol 16 (2) ◽  
pp. 239-293 ◽  
Author(s):  
Barbara Kwiatkowska

AbstractThe Southern Bluefin Tuna (Jurisdiction and Admissihilily) Award of 4 August 2000 marked the first instance of the application of compulsory arbitration under Part XV, Section 2 of the 1982 UN Law of the Sea Convention and of the exercise by the Annex VII Tribunal of la compétence de la compétence pursuant to Article 288(4) over the merits of the instant dispute. The 72-paragraph Award is a decision of pronounced procedural complexity and significant multifaceted impacts of which appreciation requires an in-depth acquaintance with procedural issues of peaceful settlement of disputes in general and the-law-of-the-sea-related disputes in particular. Therefore, the article surveys first the establishment of and the course of proceedings before the five-member Annex VII Arbitral Tribunal, presided over by the immediate former ICJ President, Judge Stephen M. Schwebel, and also comprising Judges Keith, Yamada. Feliciano and Tresselt. Subsequently, the wide range of specific paramount questions and answers of the Tribunal are scrutinised against the background of arguments advanced by the applicants (Australia and New Zealand) and the respondent (Japan) during both written and oral pleadings, including in reliance on the extensive ICJ jurisprudence and treaty practice concerned. On this basis, the article turns to an appraisal of the impacts of the Arbitral Tribunal's paramount holdings and its resultant dismissal of jurisdiction with the scrupulous regard for the fundamental principle of consensuality. Amongst such direct impacts as between the parties to the instant case, the inducements provided by the Award to reach a successful settlement in the future are of particular importance. The Award's indirect impacts concern exposition of the paramount doctrine of parallelism between the umbrella UN Convention and many compatible (fisheries, environmental and other) treaties, as well as of multifaceted, both substantial and procedural effects of that parallelism. All those contributions will importantly guide other courts and tribunals seised in the future under the Convention's Part XV, Section 2.


2011 ◽  
Vol 688 ◽  
pp. 66-87 ◽  
Author(s):  
Efrath Barta

AbstractThe flow regime in the vicinity of oscillatory slender bodies, either an isolated one or a row of many bodies, immersed in viscous fluid (i.e. under creeping flow conditions) is studied. Applying the slender-body theory by distributing proper singularities on the bodies’ major axes yields reasonably accurate and easily computed solutions. The effect of the oscillations is revealed by comparisons with known Stokes flow solutions and is found to be most significant for motion along the normal direction. Streamline patterns associated with motion of a single body are characterized by formation and evolution of eddies. The motion of adjacent bodies results, with a reduction or an increase of the drag force exerted by each body depending on the direction of motion and the specific geometrical set-up. This dependence is demonstrated by parametric results for frequency of oscillations, number of bodies, their slenderness ratio and the spacing between them. Our method, being valid for a wide range of parameter values and for densely packed arrays of rods, enables simulation of realistic flapping of bristled wings of some tiny insects and of locomotion of flagella and ciliated micro-organisms, and might serve as an efficient tool in the design of minuscule vehicles. Its potency is demonstrated by a solution for the flapping of thrips.


Author(s):  
J. E. M. Mordue

Abstract A description is provided for Ustilago hypodytes. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: A wide range of grasses, including species of Agropyron (many), Ammophila, Brachypodium, Bromus, Calamagrostis, Diplachne, Distichlis, Elymus (many), Festuca, Glyceria, Hilaria, Hordeum, Haynaldia, Lygeum, Melica, Orysopsis, Panicum, Phalaris, Phleum, Poa (many), Puccinellia, Secale, Sitanion, Sporobolus, Stipa (many), and Trisetum. DISEASE: Stem smut of grasses. GEOGRAPHICAL DISTRIBUTION: Chiefly a temperate species found in Europe (including Denmark, Finland, France, Germany, Hungary, Italy, Romania, Sweden, Switzerland, UK, USSR, Yugoslavia) and North America (Canada, USA) and extending to central and South America (Argentina, Peru, Uruguay), N. Africa (Libya, Morocco, Tunisia), Japan, Australia and New Zealand. TRANSMISSION: Not fully understood, though inoculation experiments have demonstrated that infection occurs in mature vegetative plants (possibly through meristematic tissue), not seeds or flowers (22, 240; 24, 511). Once established, infection is systemic, probably overwintering in the root system and spreading by vegetative multiplication of host plants as well as from plant to plant (24, 511; 19, 720).


2015 ◽  
Vol 1 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Simon Wallace ◽  
Steve Riley

Purpose Tourism 2025 – Growing Value Together/Whakatipu Uara Ngatahi is a framework to unite New Zealand's large and diverse tourism industry and ignite strong, aspirational economic growth. Its goal is to see the tourism industry contribute $41 billion a year to the New Zealand economy by 2025, up from $24 billion now. It provides vital context for some collective actions by big or small industry clusters and for thousands of actions individual businesses will take each year. The paper aims to discuss these issues. Design/methodology/approach A wide range of tourism industry stakeholders were consulted over an 18‐month period to ensure the project was being developed on a solid, evidence‐based foundation. There was strong stakeholder support for a framework which the private sector takes ownership of and responsibility for, but which also recognises that public sector support is vital. The project team developed a “straw‐man” growth framework model which resulted in carrying out detailed investigations and consultation to test and, where necessary, adjust that model into its final form. Findings There were four major forces shaping the global tourism market. There was one positive force for New Zealand countered by three tough challenges. The strawman growth framework comprised five separate yet inter‐connected “cycle of growth” themes. These themes are relatively consistent with global national tourism plans that were studied. Used intelligently and in harmony, with the industry fully understanding the inter‐relationships and inter‐dependencies within the “cycle of growth”, the key themes enable the tourism industry to successfully come to grips with the challenges and opportunities ahead. Originality/value Tourism 2025 is aimed at aligning the industry on a pathway towards aspirational growth.


2019 ◽  
Author(s):  
Gustavo Enck Sambrano ◽  
Gustavo P Riboldi ◽  
Keli C Reiter ◽  
Thiago Galvão da Silva Paim ◽  
Neidmar Correa Tolfo ◽  
...  

Background: Streptococcus pyogenes, a Group A streptococci (GAS), is an important human pathogen that causes a wide range of infections. Methods: Twenty five clinical isolates of S. pyogenes were submitted to an emm typing and to a Real-time PCR analysis for 23 important virulence factors. Results: Fourteen emm types were found and the emm1 type was the most prevalent. The majority of the isolates were classified as emm pattern E, followed by A-C3. No pattern D was found. Among the virulence factors, the most prevalent were SpeG, Slo, C5a-peptidase and SPNA. Phage encoded virulence genes were also found among the strains, such as mf-2, SpeJ and SpeL. Discussion: The emm1 type was the most prevalent while the 13 others M types were distributed along the strains. No tissue tropism was found on the isolates. The virulence factors analysis demonstrated that chromosomally and phage-encoded genes were found, which confers a potential for high virulent micro-organisms.


Sign in / Sign up

Export Citation Format

Share Document