scholarly journals An FPGA Based Hardware Accelerator for Remote Surveillance Cameras

2021 ◽  
Author(s):  
◽  
Alexander John Petre Kane

<p>The Blackeye II camera, produced by Kinopta, is used for remote security, conservation and traffic flow surveillance. The camera uses an image sensor to acquire photographs which undergo image processing and JPEG encoding on a microprocessor. Although the microprocessor performs other tasks, it is the processing and encoding of images that limit the frame rate of the camera to 2 frames per second (fps). Clients have requested an increase to 12.5 fps while adding more image processing to each photograph. The current microprocessor-based system is unable to achieve this.  Custom digital logic systems perform well on processes that naturally form a pipeline, such as the Blackeye II image processing system. This project develops a digital logic system based on an FPGA to receive images from the image sensor, perform the required image processing operations, encode the images in JPEG format and send them on to the microprocessor. The objective is to implement a proof of concept device based upon the Blackeye II’s existing hardware and an FPGA development board. It will implement the proposed pipeline including one example of an image processing operation.  A JPEG encoder is designed to process the 752 × 480 greyscale photographs from the image processor in real time. The JPEG encoder consists of four stages: discrete cosine transform (DCT), quantisation, zig-zag buffer and Huffman encoder. The DCT design is based upon the work of Woods et al. [1], which is improved on. An analysis of the relationship between precision and accuracy in the DCT and quantisation stages is used to minimise the system’s resource requirements. The JPEG encoder is successfully tested in simulation.  Input and output stages are added to the design. The input stage receives data from the image sensor and removes breaks in the data stream. The output stage must concatenate the data from the JPEG encoder and transmit it to the microprocessor via the microprocessor’s ISI (image sensor interface) peripheral. An image sharpening filter is developed and inserted into the pipeline between the input and JPEG encoder. Because remote surveillance cameras are battery powered, the minimisation of power consumption is a key concern. To minimise power consumption a mechanism is introduced to track those modules in the pipeline that are in use at any time. Any not in use are paused by gating the module’s clock source.  Once the system is complete and tested in simulation it is loaded into hardware. The FPGA development board is attached to the image sensor board and microprocessor board of the Blackeye II camera by a purpose-built breakout board. Plugging the microprocessor board into a PC provides a live stream of images proving the successful operation of the FPGA system. The project objectives were exceeded by increasing the frame rate of the Blackeye II to 20 fps, which will not decrease with additional image processing operations.  The project was viewed as a success by Kinopta, who have committed to its further development.</p>

2021 ◽  
Author(s):  
◽  
Alexander John Petre Kane

<p>The Blackeye II camera, produced by Kinopta, is used for remote security, conservation and traffic flow surveillance. The camera uses an image sensor to acquire photographs which undergo image processing and JPEG encoding on a microprocessor. Although the microprocessor performs other tasks, it is the processing and encoding of images that limit the frame rate of the camera to 2 frames per second (fps). Clients have requested an increase to 12.5 fps while adding more image processing to each photograph. The current microprocessor-based system is unable to achieve this.  Custom digital logic systems perform well on processes that naturally form a pipeline, such as the Blackeye II image processing system. This project develops a digital logic system based on an FPGA to receive images from the image sensor, perform the required image processing operations, encode the images in JPEG format and send them on to the microprocessor. The objective is to implement a proof of concept device based upon the Blackeye II’s existing hardware and an FPGA development board. It will implement the proposed pipeline including one example of an image processing operation.  A JPEG encoder is designed to process the 752 × 480 greyscale photographs from the image processor in real time. The JPEG encoder consists of four stages: discrete cosine transform (DCT), quantisation, zig-zag buffer and Huffman encoder. The DCT design is based upon the work of Woods et al. [1], which is improved on. An analysis of the relationship between precision and accuracy in the DCT and quantisation stages is used to minimise the system’s resource requirements. The JPEG encoder is successfully tested in simulation.  Input and output stages are added to the design. The input stage receives data from the image sensor and removes breaks in the data stream. The output stage must concatenate the data from the JPEG encoder and transmit it to the microprocessor via the microprocessor’s ISI (image sensor interface) peripheral. An image sharpening filter is developed and inserted into the pipeline between the input and JPEG encoder. Because remote surveillance cameras are battery powered, the minimisation of power consumption is a key concern. To minimise power consumption a mechanism is introduced to track those modules in the pipeline that are in use at any time. Any not in use are paused by gating the module’s clock source.  Once the system is complete and tested in simulation it is loaded into hardware. The FPGA development board is attached to the image sensor board and microprocessor board of the Blackeye II camera by a purpose-built breakout board. Plugging the microprocessor board into a PC provides a live stream of images proving the successful operation of the FPGA system. The project objectives were exceeded by increasing the frame rate of the Blackeye II to 20 fps, which will not decrease with additional image processing operations.  The project was viewed as a success by Kinopta, who have committed to its further development.</p>


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3649
Author(s):  
Minhyun Jin ◽  
Hyeonseob Noh ◽  
Minkyu Song ◽  
Soo Youn Kim

In this paper, we propose a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) that has built-in mask circuits to selectively capture either edge-detection images or normal 8-bit images for low-power computer vision applications. To detect the edges of images in the CIS, neighboring column data are compared in in-column memories after column-parallel analog-to-digital conversion with the proposed mask. The proposed built-in mask circuits are implemented in the CIS without a complex image signal processer to obtain edge images with high speed and low power consumption. According to the measurement results, edge images were successfully obtained with a maximum frame rate of 60 fps. A prototype sensor with 1920 × 1440 resolution was fabricated with a 90-nm 1-poly 5-metal CIS process. The area of the 4-shared 4T-active pixel sensor was 1.4 × 1.4 µm2, and the chip size was 5.15 × 5.15 mm2. The total power consumption was 9.4 mW at 60 fps with supply voltages of 3.3 V (analog), 2.8 V (pixel), and 1.2 V (digital).


2019 ◽  
Vol 63 (5) ◽  
pp. 50404-1-50404-4
Author(s):  
Hyeonkyu Kim ◽  
Hoyoung Yoo

Abstract In a recent image processing system, convolution operations play a significant role in manipulating image and extracting features from images. Due to the increase of kernel sizes, the image processing hardware suffers from severe hardware complexity and power consumption. In this article, an area-efficient structure is proposed for two-dimensional separable convolution operations. Since a separable convolution allows to translate a two-dimensional convolution into two one-dimensional convolutions, it is possible to compute row-wise and column-wise convolutions independently. Whereas the previous work performs such one-dimensional convolutions in sequence, the proposed structure computes the one-dimensional convolutions simultaneously by rescheduling the computational sequence. Experimental results show that the proposed structure saves approximately 80% and 38% of the hardware resources compared to the conventional and previous structures, respectively.


2005 ◽  
Vol 14 (05) ◽  
pp. 895-921
Author(s):  
ISA SERVAN UZUN ◽  
ABBES AMIRA

Signal and image processing applications require high computational power with the ability to experiment different algorithms involving matrix transforms. Reconfigurable hardware devices in the form of Field Programmable Gate Arrays (FPGAs) have been proposed to obtain high performance at an economical price. However, the users must program FPGAs at a very low level and must have a detailed knowledge of the architecture of the device being used. In trying to reconcile the dual requirements of high performance and the ease of development, this paper reports the design and realization of the Fast Fourier Transforms (FFTs) using a FPGA-based environment, which enables system designer to meet different system requirements (i.e., chip area, speed, memory, etc.) for a range of signal processing and imaging applications. The use of the proposed environment has been proven by the developing a high-level FPGA-based parametrizable image processing system for frequency-domain filtering application. The system achieves real-time image filtering performance exceeding those of currently available solutions by an order of magnitude in frame rate and input image size.


2012 ◽  
Vol 7 (3) ◽  
pp. 129-136
Author(s):  
Aleksandr Golitsyn ◽  
Natalya Seyfi

The article describes the hardware development of the image processing system which is used as a viewer in digital day-and-night surveillance device. During the work the most suitable image sensor for the surveillance in low luminance conditions is selected, image processing module based on FPGA is developed and the printed circuit board of the device is designed


2014 ◽  
Vol 563 ◽  
pp. 338-341
Author(s):  
Jun Hong Wang ◽  
Zong Rui Li ◽  
Xi Bin Wang

The CCD image sensor is set in the different production position, whose output signal is converted into digital signals to a dedicated image processing system by A/D. Using the image enhancement, smoothing, sharpening, segmentation, feature extraction, image recognition and understanding of digital image processing techniques,the system can identify the image, compare with feature information preservation, decide whether to enter the next process according to the similarity degree of alignment. Visual inspection having high precision, fast speed, working in the industrial field is stable and reliable, and improves the level of automation of production, make the products more competitive.


Sign in / Sign up

Export Citation Format

Share Document