scholarly journals Determining the Viability of the Use of Magneto-Rheological Fluid in a Low Cost Stroke Rehabilitation Device

2021 ◽  
Author(s):  
◽  
Abigail Rajendran

<p>There are over 15 million people affected by strokes worldwide with a third left disabled. It is estimated that only 5 to 20 % regain upper limb functionality. However, research has shown that repetitive movement on the affected limb improves motor relearning. With the number of people affected by strokes rising each year the demand has begun straining hospital resources, therefore there is a need for some therapy to be moved away from clinical settings and into a person’s home. Robot assisted therapy is a growing field aiming to meet this demand. However currently there are no low cost devices able to actively exercise and strengthen a person’s hand during the acute (early) stage of stroke rehabilitation.  This study is a part of a larger project involving the development of a low cost, assistive stroke rehabilitation device requiring a controllable damper. The aim of the study is to determine whether the use of magnetorheological fluid in a controllable damper is viable for use in the planned rehabilitation device. A rotary damper configuration was chosen as it can be made compact and avoid fluid leakage. To be deemed suitable for the application, the viscous torque of the damper needed to be controllable with varying input current. The required damping torques produced must be repeatable and needs to be generated below 34 C, the specified maximum operating temperature of the system. The performance of three vane designs for the rotary damper were investigated. These three designs were layered discs, a paddle and a helix. A test rig using a pulley configuration was designed and constructed to quantify the performance of the vane designs. The test rig recorded the opposing force and temperature measurements for each damper design. The measurements of interest were the off-state (no input current) torque, the achievable torque range, and also the consistency of the measurements. Experiments were conducted with the damper containing air to determine the pre-existing friction between the vane and housing, and water and motor oil were used as the damper fluid to investigate the performance of the designs with known fluid viscosities. Lastly experiments containing magneto-rheological fluid were conducted to determine the controllability and consistency of the viscous torque of each design. The paddle design was selected based on its range and consistency of produced torque, simplicity of the design and expected economical manufacture. With an input current of 0 to 2 A the damper produced a viscous torque range of 0.0036 Nm to 0.044 Nm, which was the equivalent opposing force of approximately 7.3 N. During testing of the various damper designs, a few imperfections were found. A modified version of the chosen damper was constructed to determine whether those features were manufacturing artifacts. It was found that the force measurements became smoother and previous periodic oscillations in the measurements were eliminated. The viscous torque of the paddle design was found to be controllable within the given operational conditions and therefore the use of magnetorheological fluid is a viable solution for use in a low cost stroke rehabilitation device.</p>

2021 ◽  
Author(s):  
◽  
Abigail Rajendran

<p>There are over 15 million people affected by strokes worldwide with a third left disabled. It is estimated that only 5 to 20 % regain upper limb functionality. However, research has shown that repetitive movement on the affected limb improves motor relearning. With the number of people affected by strokes rising each year the demand has begun straining hospital resources, therefore there is a need for some therapy to be moved away from clinical settings and into a person’s home. Robot assisted therapy is a growing field aiming to meet this demand. However currently there are no low cost devices able to actively exercise and strengthen a person’s hand during the acute (early) stage of stroke rehabilitation.  This study is a part of a larger project involving the development of a low cost, assistive stroke rehabilitation device requiring a controllable damper. The aim of the study is to determine whether the use of magnetorheological fluid in a controllable damper is viable for use in the planned rehabilitation device. A rotary damper configuration was chosen as it can be made compact and avoid fluid leakage. To be deemed suitable for the application, the viscous torque of the damper needed to be controllable with varying input current. The required damping torques produced must be repeatable and needs to be generated below 34 C, the specified maximum operating temperature of the system. The performance of three vane designs for the rotary damper were investigated. These three designs were layered discs, a paddle and a helix. A test rig using a pulley configuration was designed and constructed to quantify the performance of the vane designs. The test rig recorded the opposing force and temperature measurements for each damper design. The measurements of interest were the off-state (no input current) torque, the achievable torque range, and also the consistency of the measurements. Experiments were conducted with the damper containing air to determine the pre-existing friction between the vane and housing, and water and motor oil were used as the damper fluid to investigate the performance of the designs with known fluid viscosities. Lastly experiments containing magneto-rheological fluid were conducted to determine the controllability and consistency of the viscous torque of each design. The paddle design was selected based on its range and consistency of produced torque, simplicity of the design and expected economical manufacture. With an input current of 0 to 2 A the damper produced a viscous torque range of 0.0036 Nm to 0.044 Nm, which was the equivalent opposing force of approximately 7.3 N. During testing of the various damper designs, a few imperfections were found. A modified version of the chosen damper was constructed to determine whether those features were manufacturing artifacts. It was found that the force measurements became smoother and previous periodic oscillations in the measurements were eliminated. The viscous torque of the paddle design was found to be controllable within the given operational conditions and therefore the use of magnetorheological fluid is a viable solution for use in a low cost stroke rehabilitation device.</p>


2011 ◽  
Vol 335-336 ◽  
pp. 1334-1339 ◽  
Author(s):  
Shi Sha Zhu ◽  
Li Juan Qu ◽  
You Hang Zhou

The magnetorheological elastomer has a broader potential application due to overcoming the settlement, poor stability, sealing problems and other shortcomings of magnetorheological fluid easily. Firstly the magnetorheological elastomer is prepared, and then it is experimentally proved that the magnetic effect of magneto-rheological elastomers is occurred under magnet field and the stiffness can be also adjusted by controlling the density of field through performance experiments. In this paper, a squeeze mode magnetorheological elastomer vibration isolator and a test rig are designed, it has been shown that the natural frequency of vibration isolator is changed, and the effect of vibration isolation is preferable from the amplitude-frequency characteristic curves for vibration control experiments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


Actuators ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Yong Hae Heo ◽  
Sangkyu Byeon ◽  
Tae-Hoon Kim ◽  
In-Ho Yun ◽  
Jin Ryong Kim ◽  
...  

This paper presents a magneto-rheological (MR) actuator that can be easily inserted into haptic shoes and can haptically simulate the material properties of the ground. To increase the resistive force of the proposed actuator, we designed a movable piston having multiple operation modes of MR fluids. Further, the design of a solenoid coil was optimized to maximize the resistive force in a limited-sized MR actuator. Simulations were conducted to predict the actuation performance and to show that the magnetic flux flows well by forming a closed loop in the proposed actuator. The quantitative evaluation of the proposed actuator was investigated by measuring the resistive force as a function of the input current and its pressed depth. From the result, we found that the proposed actuator can create over 600 N by adjusting the input current.


Author(s):  
John C. Ulicny ◽  
Daniel J. Klingenberg ◽  
Anthony L. Smith ◽  
Zongxuan Sun

A lumped-parameter mathematical model of an automotive magnetorheological (MR) fluid fan clutch was developed. This model is able to describe the average fluid temperature, average clutch temperature, and output fan speed as a function of time, input current, and fluid composition. The model also reproduces numerous features of fan operation observed experimentally and revealed a mechanism for some observed cases of hysteresis. However, it fails to capture certain other features which lead us to conclude that phenomena which are not included in the model, e.g., sedimentation and re-suspension, are important to the clutch behavior. In addition, the results indicate that certain physical properties need to be measured over a larger temperature range in order for the model to better predict the clutch behavior.


1970 ◽  
Vol 185 (1) ◽  
pp. 95-107
Author(s):  
B. H. Croft

The requirements of the modern automotive petrol engine in relation to higher specific power outputs while retaining good driveability and satisfying the impending exhaust emission control regulations, motivated an investigation into the potential of petrol injection. Consideration of the control requirements and accuracy necessary led, at an early stage, to the selection of electronic control on the basis of control capability, long term reliability, relatively low cost and the potential for future development. The fuel system was designed round the electronic control, manifold injection being used instead of direct injection on the basis of simplicity, lower cost and greater installation flexibility. The original system concept has changed only in detail, development effort being applied to the refinement of the system components to achieve a high standard of performance and the facility to apply the system with minimal modification to a wide range of engine types. The system is described in some detail and typical examples of the system performance on vehicles are presented.


Author(s):  
Chetan M. Jadhav ◽  
V. K. Bairagi

<p>The term Arrhythmia refers to any change from the normal sequence in the electrical impulses. It is also treated as abnormal heart rhythms or irregular heartbeats. The rate of growth of Cardiac Arrhythmia disease is very high &amp; its effects can be observed in any age group in society. Arrhythmia detection can be done in many ways but effective &amp; simple method for detection &amp; diagnosis of  Cardiac Arrhythmia is by doing analysis of Electrocardiogram signals from ECG sensors. ECG signal can give us the detail information of heart activities, so we can use ECG signals to detect the rhythm &amp; behaviour of heart beats resulting into detection &amp; diagnosis of Cardiac Arrhythmia. In this paper new &amp; improved methodology for early Detection &amp; Classification of Cardiac Arrhythmia has been proposed. In this paper ECG signals are captured using ECG sensors &amp; this ECG signals are used &amp; processed to get the required data regarding heart beats of the human being &amp; then proposed methodology applies for Detection &amp; Classification of Cardiac Arrhythmia. Detection of Cardiac Arrhythmia using ECG signals allows us for easy &amp; reliable way with low cost solution to diagnose Arrhythmia in its prior early stage.</p>


Sign in / Sign up

Export Citation Format

Share Document