The Development of an Electronically Controlled Petrol Injection System

1970 ◽  
Vol 185 (1) ◽  
pp. 95-107
Author(s):  
B. H. Croft

The requirements of the modern automotive petrol engine in relation to higher specific power outputs while retaining good driveability and satisfying the impending exhaust emission control regulations, motivated an investigation into the potential of petrol injection. Consideration of the control requirements and accuracy necessary led, at an early stage, to the selection of electronic control on the basis of control capability, long term reliability, relatively low cost and the potential for future development. The fuel system was designed round the electronic control, manifold injection being used instead of direct injection on the basis of simplicity, lower cost and greater installation flexibility. The original system concept has changed only in detail, development effort being applied to the refinement of the system components to achieve a high standard of performance and the facility to apply the system with minimal modification to a wide range of engine types. The system is described in some detail and typical examples of the system performance on vehicles are presented.

Author(s):  
Guanghui Wei

The trend of automobile development is safety, energy saving and environmental protection. Due to the developmentand application of new technologies such as electronic technology, computer technology and information technology,the electronic control of automobile has made great progress in the control precision, scope, adaptability andintelligence and realized the fully optimized operation of the automobile. Therefore, in the reduction of emissions,reduce fuel consumption, improve safety and comfort and many other aspects of electronic control technology hasobvious advantages. This is bound to require a large number of sensors in the car. These miniature sensors are smallenough to enable a wide range of new features, high-volume and high-precision production, low cost and easy to formlarge-scale and multi-function arrays that make them ideal for automotive applications.


1988 ◽  
Vol 27 (01) ◽  
pp. 12-18 ◽  
Author(s):  
J. Eiber ◽  
J. Hennig ◽  
H W. Pabst ◽  
G. Buttermann

Today dual-photon absorptiometry (DPA) is recommended as the best procedure for diagnosing osteoporosis at an early stage considering its low cost, low radiation exposure and reasonable reliability. Cortical (neck of femur) and trabecular (L 2-4) bone mass has been determined repeatedly with DPA using 153Gd (NOVO Lab 22 a) in 545 females and 112 males with no evidence of bone diseases. Measured “normal” (age-and sex-related average) values for bone mineral content (BMC) differed significantly (p <0.01) from those of US inhabitants determined by the same equipment, i. e., they were on average about 30% lower, but matched well with corresponding results from Belgium. BMC-area was found the most suitable parameter both for cross-sectional and longitudinal studies, since it is independent of height and weight. But there is still need to reduce the overlap and improve accuracy and reproducibility for making decisions after shorter intervals. - Assessment of the individual mineral loss and fracture risk by comparison with average values remains problematical due to the wide range of “normal” BMC values, and in women additionally due to the variable onset of menopause. For estimations of the individual fracture risk of elderly patients BMC should not be normalized on age, because at the age of 65 half of the women had “pathologic” values, i.e. were below the so-called “osteoporosis threshold”. Comparison of the individually measured postmenopausal BMC with average values of premenopausal women and with BMC values normalized to their menopausal age may be helpful approaches to overcoming these difficulties. Because of the lack of earlier individual data in most cases repeated BMC measurements are still required for assessment of demineralization speed.


Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 72 ◽  
Author(s):  
Da-Quan Yang ◽  
Bing Duan ◽  
Xiao Liu ◽  
Ai-Qiang Wang ◽  
Xiao-Gang Li ◽  
...  

The ability to detect nanoscale objects is particular crucial for a wide range of applications, such as environmental protection, early-stage disease diagnosis and drug discovery. Photonic crystal nanobeam cavity (PCNC) sensors have attracted great attention due to high-quality factors and small-mode volumes (Q/V) and good on-chip integrability with optical waveguides/circuits. In this review, we focus on nanoscale optical sensing based on PCNC sensors, including ultrahigh figure of merit (FOM) sensing, single nanoparticle trapping, label-free molecule detection and an integrated sensor array for multiplexed sensing. We believe that the PCNC sensors featuring ultracompact footprint, high monolithic integration capability, fast response and ultrahigh sensitivity sensing ability, etc., will provide a promising platform for further developing lab-on-a-chip devices for biosensing and other functionalities.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 224
Author(s):  
Jaehyun Bae ◽  
Young Jun Won ◽  
Byung-Wan Lee

Diabetic kidney disease (DKD) is one of the most common forms of chronic kidney disease. Its pathogenic mechanism is complex, and it can affect entire structures of the kidney. However, conventional approaches to early stage DKD have focused on changes to the glomerulus. Current standard screening tools for DKD, albuminuria, and estimated glomerular filtration rate are insufficient to reflect early tubular injury. Therefore, many tubular biomarkers have been suggested. Non-albumin proteinuria (NAP) contains a wide range of tubular biomarkers and is convenient to measure. We reviewed the clinical meanings of NAP and its significance as a marker for early stage DKD.


2021 ◽  
pp. 096100062110165
Author(s):  
Mohammadhiwa Abdekhoda ◽  
Fatemeh Ranjbaran ◽  
Asghar Sattari

This study was conducted with the aim of evaluating the role of information and information resources in the awareness, control, and prevention of COVID-19. This study was a descriptive-analytical survey in which 450 participants were selected for the study. The data collection instrument was a researcher-made questionnaire. Descriptive and inferential statistics were used to analyze the data through SPSS. The findings show that a wide range of mass media has become well known as information resources for COVID-19. Other findings indicate a significant statistical difference in the rate of using information resources during COVID-19 based on age and gender; however, this difference is not significant regarding the reliability of information resources with regard to age and gender. Health information has an undisputable role in the prevention and control of pandemic diseases such as COVID-19. Providing accurate, reliable, and evidence-based information in a timely manner for the use of resources and information channels related to COVID-19 can be a fast and low-cost strategic approach in confronting this disease.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Germano Heinzelmann ◽  
Michael K. Gilson

AbstractAbsolute binding free energy calculations with explicit solvent molecular simulations can provide estimates of protein-ligand affinities, and thus reduce the time and costs needed to find new drug candidates. However, these calculations can be complex to implement and perform. Here, we introduce the software BAT.py, a Python tool that invokes the AMBER simulation package to automate the calculation of binding free energies for a protein with a series of ligands. The software supports the attach-pull-release (APR) and double decoupling (DD) binding free energy methods, as well as the simultaneous decoupling-recoupling (SDR) method, a variant of double decoupling that avoids numerical artifacts associated with charged ligands. We report encouraging initial test applications of this software both to re-rank docked poses and to estimate overall binding free energies. We also show that it is practical to carry out these calculations cheaply by using graphical processing units in common machines that can be built for this purpose. The combination of automation and low cost positions this procedure to be applied in a relatively high-throughput mode and thus stands to enable new applications in early-stage drug discovery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Elena Antinori ◽  
Marco Contardi ◽  
Giulia Suarato ◽  
Andrea Armirotti ◽  
Rosalia Bertorelli ◽  
...  

AbstractMycelia, the vegetative part of fungi, are emerging as the avant-garde generation of natural, sustainable, and biodegradable materials for a wide range of applications. They are constituted of a self-growing and interconnected fibrous network of elongated cells, and their chemical and physical properties can be adjusted depending on the conditions of growth and the substrate they are fed upon. So far, only extracts and derivatives from mycelia have been evaluated and tested for biomedical applications. In this study, the entire fibrous structures of mycelia of the edible fungi Pleurotus ostreatus and Ganoderma lucidum are presented as self-growing bio-composites that mimic the extracellular matrix of human body tissues, ideal as tissue engineering bio-scaffolds. To this purpose, the two mycelial strains are inactivated by autoclaving after growth, and their morphology, cell wall chemical composition, and hydrodynamical and mechanical features are studied. Finally, their biocompatibility and direct interaction with primary human dermal fibroblasts are investigated. The findings demonstrate the potentiality of mycelia as all-natural and low-cost bio-scaffolds, alternative to the tissue engineering systems currently in place.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Duy Tung Phan ◽  
Chang Won Jung

AbstractAn electromagnetic pulse (EMP) with high energy can damage electronic equipment instantly within a wide range of thousands of kilometers. Generally, a metal plate placed inside a thick concrete wall is used against an EMP, but it is not suitable for an EMP shielding window, which requires not only strong shielding effectiveness (SE) but also optical transparency (OT). In this paper, we propose a very thin and optically transparent structure with excellent SE for EMP shielding window application. The proposed structure consists of a saltwater layer held between two glass substrates and two metal mesh layers on the outside of the glass, with a total thickness of less than 1.5 cm. The SE and OT of the structure are above 80 dB and 45%, respectively, which not only meet the requirement of EMP shielding for military purposes but also retain the procedure of good observation. Moreover, the OT of the structure can be significantly improved using only one metal mesh film (MMF) layer, while the SE is still maintained high to satisfy the required SE for home applicants. With the major advantages of low cost, optical transparency, strong SE, and flexible performance, the proposed structure can be considered a good solution for transparent EMP shielding windows.


Sign in / Sign up

Export Citation Format

Share Document