scholarly journals Investigating the Mechanism Behind the Release of Microcystins in Freshwater Cyanobacteria

2021 ◽  
Author(s):  
◽  
Rossella Nicolai

<p>The frequency and distribution of toxic cyanobacterial blooms are increasing globally, creating the need for a better understanding of the processes involved in toxic secondary metabolite production. Microcystins (MCs) are potent hepatotoxins produced by a wide range of bloom-forming cyanobacteria genera such as Microcystis and Planktothrix. Although the release of MCs to the extracellular environment has long been considered a by-product of cell lysis and death, several studies suggest the presence of a mechanism that actively transports these toxins outside the cell membrane. The aim of the present study was to find evidence for a link between cell lysis and concentrations of extracellular MCs. A dual-fluorescence cell viability assay using the nucleic acid stain SYTOX Green was optimised for use on Microcystis and Planktothrix. A SYTOX Green concentration of 1 µM, and an incubation time of 30 minutes, yielded a bright and even fluorescent signal that readily identified lysed cells.  The improved staining technique, in conjunction with liquid chromatography-mass spectrometry analyses, was employed in a culturing experiment to track the transfer of MCs to the extracellular environment in relation to the amount of cell lysis. For Microcystis, there was a strong and significant positive relationship between cell lysis and the concentration of extracellular MC. When the extracellular MC was predicted according to cell lysis levels and the MC content per cell, lysed cells were a major contributor of MCs to the extracellular environment, although the model overestimated the concentrations. Relationships for Planktothrix were significant but weaker, possibly due to reduced accuracy in the cell enumeration step, which would have altered the calculated MC content per cell.  Whilst these findings support the hypothesis that cell lysis is the main contributor of extracellular MCs, the results do not exclude a role of MCs as signalling molecules. The recent finding that programmed cell death may occur in Microcystis under various environmental conditions may explain the commonly observed increase in extracellular MCs. Understanding the mechanisms involved in the transfer of MCs to the extracellular environment will provide further clarification on the function of these secondary metabolites and lead to the improvement of water quality management strategies.</p>

2021 ◽  
Author(s):  
◽  
Rossella Nicolai

<p>The frequency and distribution of toxic cyanobacterial blooms are increasing globally, creating the need for a better understanding of the processes involved in toxic secondary metabolite production. Microcystins (MCs) are potent hepatotoxins produced by a wide range of bloom-forming cyanobacteria genera such as Microcystis and Planktothrix. Although the release of MCs to the extracellular environment has long been considered a by-product of cell lysis and death, several studies suggest the presence of a mechanism that actively transports these toxins outside the cell membrane. The aim of the present study was to find evidence for a link between cell lysis and concentrations of extracellular MCs. A dual-fluorescence cell viability assay using the nucleic acid stain SYTOX Green was optimised for use on Microcystis and Planktothrix. A SYTOX Green concentration of 1 µM, and an incubation time of 30 minutes, yielded a bright and even fluorescent signal that readily identified lysed cells.  The improved staining technique, in conjunction with liquid chromatography-mass spectrometry analyses, was employed in a culturing experiment to track the transfer of MCs to the extracellular environment in relation to the amount of cell lysis. For Microcystis, there was a strong and significant positive relationship between cell lysis and the concentration of extracellular MC. When the extracellular MC was predicted according to cell lysis levels and the MC content per cell, lysed cells were a major contributor of MCs to the extracellular environment, although the model overestimated the concentrations. Relationships for Planktothrix were significant but weaker, possibly due to reduced accuracy in the cell enumeration step, which would have altered the calculated MC content per cell.  Whilst these findings support the hypothesis that cell lysis is the main contributor of extracellular MCs, the results do not exclude a role of MCs as signalling molecules. The recent finding that programmed cell death may occur in Microcystis under various environmental conditions may explain the commonly observed increase in extracellular MCs. Understanding the mechanisms involved in the transfer of MCs to the extracellular environment will provide further clarification on the function of these secondary metabolites and lead to the improvement of water quality management strategies.</p>


Author(s):  
R.W. Horne

The technique of surrounding virus particles with a neutralised electron dense stain was described at the Fourth International Congress on Electron Microscopy, Berlin 1958 (see Home & Brenner, 1960, p. 625). For many years the negative staining technique in one form or another, has been applied to a wide range of biological materials. However, the full potential of the method has only recently been explored following the development and applications of optical diffraction and computer image analytical techniques to electron micrographs (cf. De Hosier & Klug, 1968; Markham 1968; Crowther et al., 1970; Home & Markham, 1973; Klug & Berger, 1974; Crowther & Klug, 1975). These image processing procedures have allowed a more precise and quantitative approach to be made concerning the interpretation, measurement and reconstruction of repeating features in certain biological systems.


2015 ◽  
Vol 25 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Ryan W. McCreery ◽  
Elizabeth A. Walker ◽  
Meredith Spratford

The effectiveness of amplification for infants and children can be mediated by how much the child uses the device. Existing research suggests that establishing hearing aid use can be challenging. A wide range of factors can influence hearing aid use in children, including the child's age, degree of hearing loss, and socioeconomic status. Audiological interventions, including using validated prescriptive approaches and verification, performing on-going training and orientation, and communicating with caregivers about hearing aid use can also increase hearing aid use by infants and children. Case examples are used to highlight the factors that influence hearing aid use. Potential management strategies and future research needs are also discussed.


2021 ◽  
Vol 9 (4) ◽  
pp. 862
Author(s):  
Vittoria Catara ◽  
Jaime Cubero ◽  
Joël F. Pothier ◽  
Eran Bosis ◽  
Claude Bragard ◽  
...  

Bacteria in the genus Xanthomonas infect a wide range of crops and wild plants, with most species responsible for plant diseases that have a global economic and environmental impact on the seed, plant, and food trade. Infections by Xanthomonas spp. cause a wide variety of non-specific symptoms, making their identification difficult. The coexistence of phylogenetically close strains, but drastically different in their phenotype, poses an added challenge to diagnosis. Data on future climate change scenarios predict an increase in the severity of epidemics and a geographical expansion of pathogens, increasing pressure on plant health services. In this context, the effectiveness of integrated disease management strategies strongly depends on the availability of rapid, sensitive, and specific diagnostic methods. The accumulation of genomic information in recent years has facilitated the identification of new DNA markers, a cornerstone for the development of more sensitive and specific methods. Nevertheless, the challenges that the taxonomic complexity of this genus represents in terms of diagnosis together with the fact that within the same bacterial species, groups of strains may interact with distinct host species demonstrate that there is still a long way to go. In this review, we describe and discuss the current molecular-based methods for the diagnosis and detection of regulated Xanthomonas, taxonomic and diversity studies in Xanthomonas and genomic approaches for molecular diagnosis.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 389
Author(s):  
Kukka Aimonen ◽  
Satu Suhonen ◽  
Mira Hartikainen ◽  
Viviana R. Lopes ◽  
Hannu Norppa ◽  
...  

Wood-derived nanofibrillated cellulose (NFC) has emerged as a sustainable material with a wide range of applications and increasing presence in the market. Surface charges are introduced during the preparation of NFC to facilitate the defibrillation process, which may also alter the toxicological properties of NFC. In the present study, we examined the in vitro toxicity of NFCs with five surface chemistries: nonfunctionalized, carboxymethylated, phosphorylated, sulfoethylated, and hydroxypropyltrimethylammonium-substituted. The NFC samples were characterized for surface functional group density, surface charge, and fiber morphology. Fibril aggregates predominated in the nonfunctionalized NFC, while individual nanofibrils were observed in the functionalized NFCs. Differences in surface group density among the functionalized NFCs were reflected in the fiber thickness of these samples. In human bronchial epithelial (BEAS-2B) cells, all NFCs showed low cytotoxicity (CellTiter-GloVR luminescent cell viability assay) which never exceeded 10% at any exposure time. None of the NFCs induced genotoxic effects, as evaluated by the alkaline comet assay and the cytokinesis-block micronucleus assay. The nonfunctionalized and carboxymethylated NFCs were able to increase intracellular reactive oxygen species (ROS) formation (chloromethyl derivative of 2′,7′-dichlorodihydrofluorescein diacetate assay). However, ROS induction did not result in increased DNA or chromosome damage.


2021 ◽  
Author(s):  
Jordan Kern ◽  
Nathalie Voisin ◽  
Sean Turner ◽  
Hongxiang Yan ◽  
Konstantinos Oikonomou

&lt;p&gt;Given the wide range of institutional and market contexts in which hydroelectric dams are operated, determining the value added from improvements in hydrologic forecasts is a challenge. Many previous examples of hydrologic forecasts being used to optimize hydropower production strategies at dams focus on a single reservoir system or watershed, with a key assumption that the marginal value of hydropower production is exogenously-defined (dams are &amp;#8216;price takers&amp;#8217; in markets for electricity that exhibit no market power). In some cases, this may accurately reflect current institutional boundaries and decision making processes. However, with increased attention being paid to how more coordinated grid management strategies, including management of hydropower assets, could facilitate deep integration of renewable energy, it is critical to understand how the use of improved hydrologic forecasts could produce wider grid-scale benefits, including &amp;#160;lower costs and emissions. In this study, we quantify the value of streamflow forecasts to a centralized power system operator in charge of coordinating sub-weekly operations of hydropower assets, using the Western U.S. as a case study. We propagate flow forecasts through realistic models of reservoir operations and models of bulk power systems/wholesale electricity markets. Our results shed light on how the value of flow forecasts to grid operations can vary across regions and power systems. They also highlight the potential for conflicts between firm-specific objectives (profit maximization) and system-wide objectives (minimization of costs and emissions) when determining value added from hydrologic forecasts. &amp;#160;&lt;/p&gt;


2021 ◽  
Author(s):  
Schuyler Houser ◽  
Reza Pramana ◽  
Maurits Ertsen

&lt;p&gt;Recognizing the interrelatedness of water management and conceptual value of IWRM, many water resource governance systems are shifting from hierarchical arrangements towards more collaborative and participative networks. Increasing calls for participation recognize the value of drawing on social, political-administrative, and other kinds of knowledge in addition to technical water expertise. Participatory mandates, coordination bodies, and science-policy networks have emerged to facilitate knowledge integration, promote adaptive capacity, and align organizations in poly-centric systems.&lt;/p&gt;&lt;p&gt;Since the maintenance and effectiveness of such arrangements are contingent on trust and alignment rather than command and control, and since diverse stakeholders are engaged to co-produce knowledge, collaborators must grapple with identifying shared goals, developing knowledge management strategies to organize inputs, and attaining early progress to promote ongoing cooperation. But guidance is limited with respect to how such integrative aims are to be accomplished.&lt;/p&gt;&lt;p&gt;This research explores how systematic (but not necessarily convergent) problem structuring can support the forming, reordering, and cohering of water resource networks, especially when a complex issue &amp;#8211; in this case, water quality management &amp;#8211; rises to prominence on the policy agenda. In the early stages of a water quality project in the Brantas River Basin, Indonesia, stakeholder discussions suggested divergent conceptualizations of water quality and ideas about what conditions &amp;#8216;matter&amp;#8217;. Thus, instead of taking hydrological data as the starting point, this research first asks: What Brantas River(s) are we talking about, and why? Q-methodology is used to identify alternative perspectives on water quality held by a diverse set of stakeholders, including hydrologists. The analysis explores which aspects of the policy problem are consistent, which are contested, and whether problems indicated by hydrological science overlap, conflict, or cohere with those perceived by other stakeholders.&lt;/p&gt;&lt;p&gt;The research posits that, if scientists, engineers, decision-makers, community leaders, and other participants can appreciate areas of convergence and divergence regarding the water quality problem itself, they can lay groundwork for knowledge co-production; recognize opportunities for cooperation; better locate science in the problem space; and identify potential early wins to secure commitment. The research also asks to what extent consensus in problem structuring is necessary, or whether it is sufficient to identify strategies that are acceptable to different ontological viewpoints.&lt;/p&gt;


2018 ◽  
Vol 76 (4) ◽  
pp. 1122-1130 ◽  
Author(s):  
Lotta Clara Kluger ◽  
Sophia Kochalski ◽  
Arturo Aguirre-Velarde ◽  
Ivonne Vivar ◽  
Matthias Wolff

Abstract In February and March 2017, a coastal El Niño caused extraordinary heavy rains and a rise in water temperatures along the coast of northern Peru. In this work, we document the impacts of this phenomenon on the artisanal fisheries and the scallop aquaculture sector, both of which represent important socio-economic activities for the province of Sechura. Despite the perceived absence of effective disaster management and rehabilitation policies, resource users opted for a wide range of different adaptation strategies and are currently striving towards recovery. One year after the event, the artisanal fisheries fleet has returned to operating almost on a normal scale, while the aquaculture sector is still drastically impacted, with many people continuing to work in different economic sectors and even in other regions of the country. Recovery of the social-ecological system of Sechura likely depends on the occurrence of scallop seed and the financial capacity of small-scale producers to reinitiate scallop cultures. Long-term consequences of this coastal El Niño are yet to be studied, though the need to develop trans-local and trans-sectoral management strategies for coping with disturbance events of this scale is emphasized.


Weed Science ◽  
2018 ◽  
Vol 67 (1) ◽  
pp. 68-76 ◽  
Author(s):  
Nadeem Iqbal ◽  
Sudheesh Manalil ◽  
Bhagirath S. Chauhan ◽  
Steve W. Adkins

AbstractSesbania [Sesbania cannabina(Retz.) Pers.] is a problematic emerging weed species in Australian cotton-farming systems. However, globally, no information is available regarding its seed germination biology, and better understanding will help in devising superior management strategies to prevent further infestations. Laboratory and glasshouse studies were conducted to evaluate the impact of various environmental factors such as light, temperature, salt, osmotic and pH stress, and burial depth on germination and emergence of two Australian biotypes ofS. cannabina. Freshly harvested seeds of both biotypes possessed physical dormancy. A boiling-water scarification treatment (100±2 C) of 5-min duration was the optimum treatment to overcome this dormancy. Once dormancy was broken, the Dalby biotype exhibited a greater germination (93%) compared with the St George biotype (87%). The nondormant seeds of both biotypes showed a neutral photoblastic response to light and dark conditions, with germination marginally improved (6%) under illumination. Maximum germination of both biotypes occurred under an alternating temperature regime of 30/20 and 35/25 C and under constant temperatures of 32 or 35 C, with no germination at 8 or 11 C. Seed germination of both biotypes decreased linearly from 87% to 14% with an increase in moisture stress from 0.0 to −0.8 MPa, with no germination possible at −1.0 MPa. There was a gradual decline in germination for both biotypes when imbibed in a range of salt solutions of 25 to 250 mM, with a 50% reduction in germination occurring at 150 mM. Both biotypes germinated well under a wide range of pH values (4.0 to 10.0), with maximum germination (94%) at pH 9.0. The greatest emergence rate of the Dalby (87%) and St George (78%) biotypes was recorded at a burial depth of 1.0 cm, with no emergence at 16.0 cm. Deep tillage seems to be the best management strategy to stopS. cannabina’s emergence and further infestation of cotton (Gossypium hirsutumL.) fields. The findings of this study will be helpful to cotton agronomists in devising effective, sustainable, and efficient integrated weed management strategies for the control ofS. cannabinain cotton cropping lands.


Sign in / Sign up

Export Citation Format

Share Document