scholarly journals INFLUENCE OF TEMPERATURE AND DRAWING SPEED ON THE FORMING OF ALUMINUM ALLOY 1100 VIA WARMING HYDROFORMING PROCESS

Author(s):  
Mohammed Mishri Gatea

The limiting used of the alloys of aluminum since the formability is low at room temperature. To plan and grow more parts made of aluminum, new forming systems, for example, warm framing hydroforming and warming hydroforming processes have been explored to solve the low formability. The effect of temperature on the mechanical properties of aluminum 1100 sheet alloy is investigated at different temperature levels and strain rates using the test of uni-axial tensile. A warming forming tool for sheet metal is designed and manufactured. Four temperatures levels were used in this experiments (25 , 100 200 and 300 ). The drawing speeds that were used in these experiments were (3, 6, and 9 mm/min). Before design, the warming hydro-punch system, the analysis of this system is done in ANSYS software to choose the optimum die radius and then the results of experiments are simulated. The results of experiments showed that the appropriate hydroforming temperature and drawing speed of 1100 aluminum alloy are 300 and 3mm/min respectively. The FE simulation of strain distribution matched reasonably well with the experimental results.

2013 ◽  
Vol 549 ◽  
pp. 356-363
Author(s):  
Stefania Bruschi ◽  
Andrea Ghiotti ◽  
Francesco Michieletto

The production of aluminum alloy components through sheet forming processes conducted at elevated temperatures is gaining more and more interest as it gives raise to the possibility of a significant enhancement of the metal formability characteristics, compared to room temperature forming. Aluminum alloy AA5083 blanks, which present a limited formability at room temperature, are usually formed through superplastic forming at elevated temperature: however, this processing route is too slow to be applicable for large batch production, typical for instance of the automotive industry. The paper is aimed at exploring the formability characteristics of the AA5083 when deformed at elevated temperature, but in a range of strain rates higher than those usually applicable in superplastic forming. To this aim, uni-axial tensile tests were carried out, in order to record the material formability characteristics as a function of temperature and strain rate, and to correlate them with the developed microstructural features. It is shown that it is possible to work at higher strain rates, still preserving a significant formability, even without using a conventional fine-grained superplastic alloy.


2012 ◽  
Vol 706-709 ◽  
pp. 768-773
Author(s):  
Masahiro Nishida ◽  
Koichi Hayashi ◽  
Junichi Nakagawa ◽  
Yoshitaka Ito

The influence of temperature on crater formation and ejecta composition in thick aluminum alloy targets were investigated for impact velocities ranging from approximately 1.5 to 3.5 km/s using a two-stage light-gas gun. The diameter and depth of the crater increased with increasing temperature. The ejecta size at low temperature was slightly smaller than that at high temperature and room temperature. Temperature did not affect the size ratio of ejecta. The scatter diameter of the ejecta at high temperature was slightly smaller than those at low and room temperatures.


2016 ◽  
Vol 879 ◽  
pp. 230-235
Author(s):  
Sonia Boczkal ◽  
Marzena Lech-Grega ◽  
Wojciech Szymanski ◽  
Paweł Ostachowski ◽  
Marek Lagoda

In this study, aluminium rods were cold extruded in a direct process by KOBO method in two variants: variant I with varying (decreasing) frequency of die oscillations necessary to maintain a constant extrusion force, and variant II with constant frequency of die oscillations, leading to a decrease in the extrusion force. The tensile test of rods was carried out in a temperature range of 20 - 200°C and at a strain rate from 8xE10-5 to 8xE10-1 s-1. Significant differences in the elongation of the tested rods were observed. It was found that rods extruded at variable die oscillations and stretched at room temperature had similar elongation, independent of the strain rate. With the increase of temperature, the elongation of samples stretched at a low speed was growing from a value of about 8% at room temperature up to 40% at 200°C. At high strain rates, despite the increasing temperature, the elongation remained at the same level, i.e. 5-6%. In rods extruded at constant die oscillations, the elongation at a low strain rate was growing with the temperature from 10% at room temperature up to 29% at 200°C. At high strain rates, the elongation decreased from 28% at room temperature to 11% at 200°C. The results were interrelated with examinations of the structure of rods and fractures of tensile specimens. In the material extruded by KOBO method with constant die oscillations, the beginnings of the recrystallization process were observed, absent in the material extruded at variable die oscillations.


2011 ◽  
Vol 686 ◽  
pp. 219-224 ◽  
Author(s):  
Xiao Yu Zhong ◽  
Guang Jie Huang ◽  
Fang Fang He ◽  
Qing Liu

Uni-axial tensile plastic deformation behavior of rolled magnesium alloy AZ31B under the temperature range from room temperature(RT) to 250°C with strain rates between 10-3 and 10-1s-1 has been systematically investigated. Microstructure evolution and texture were determined using optical microscopy (OM) and electron back-scattered diffraction (EBSD) techniques, respectively. Our results indicated that the strength and elongation-to-fracture were more sensitive to strain rates at elevated temperature rather than that at room temperature; dynamic recrystallization (DRX) and relaxation of stress at elevated temperature resulted in dramatic change of mechanical properties. Compared with strain rate, the temperature played a more important role in ductility of AZ31B Mg alloy sheet.


2004 ◽  
Vol 261-263 ◽  
pp. 1337-1342 ◽  
Author(s):  
Chun Yi Ruan ◽  
Hui Ji Shi

This paper applies subjective speckle method to investigate the effects of temperature and stress on the initial process of stress corrosion of an aluminum alloy 2024-T3. Considering the sensitivity of this observational method, the roughness of surface is used to represent the degree of corrosion. Stress corrosion experiments are carried out by displacement-controlled loading on specimens of Al2024-T3 in the thickness of 2 mm board in 3.5% sodium chloride solution. The solution is controlled at several temperature levels from 22°C to 80°C. The results of experiments show that: the rate of corrosion increases fast concomitance the increase of temperature when stress is constant; at the same temperature and the load range used, the effect of stress is not very evident on the rate of corrosion; the effect of temperature is higher on the rate of corrosion in the stress corrosion than that in general corrosion without stress.


Author(s):  
T. Camalet ◽  
A. Rusinek ◽  
R. Bernier ◽  
M. Karon ◽  
R. Massion ◽  
...  

The aim of this paper is to analyze the macroscopic behavior of an aluminum alloy after severe plastic deformations (SPD). Samples of 6061 aluminum alloy are processed at room temperature by two techniques of SPD: equal channel angular pressing (ECAP) under quasi-static loading and impact under dynamic loading, using Taylor's test setup. In addition to the mechanical properties, the microstructure evolution of the material is investigated. Half of the samples are aged at 400 °C for 2 h, to remove internal stress in a commercial alloy in order to increase workability of the material. The evolution of the properties and the material behavior after 2, 4, 6, and 8 passes of the 120 deg ECAP process is investigated.


2018 ◽  
Vol 60 (4) ◽  
pp. 754
Author(s):  
Б.А. Зимин ◽  
В.Е. Свентицкая ◽  
И.В. Смирнов ◽  
Ю.В. Судьенков

AbstractThe paper presents the results of experimental studies of energy dissipation during a quasi-static stretching of metals and alloys at room temperature. The strain rates varied in the range of 10^–3–10^–2 s^–1. Samples of M1 copper, AZ31B magnesium alloy, BT6 titanium, 12Cr18Ni10Ti steel, and D16AM aluminum alloy were analyzed. The experimental results demonstrated a significant dependence of the heat release on the strain rate in the absence of its influence on stress–strain diagrams for all the metals studied in this range of strain rates. The correlation of the changes in the character of heat release with the processes of structural transformations at various stages of plastic flow is shown on the qualitative level. A difference in the nature of the processes of heat release in materials with different ratios of the plasticity and strength is noted.


2007 ◽  
Vol 551-552 ◽  
pp. 13-20
Author(s):  
Rinat K. Islamgaliev ◽  
N.F. Yunusova ◽  
M.A. Bardinova ◽  
A.R. Kilmametov ◽  
Ruslan Valiev

The ultrafine-grained (UFG) 1421 aluminum alloy processed by equal channel angular pressing (ECAP) has demonstrated enhanced superplasticity at low temperature and high strain rates. This UFG material was successfully rolled at temperatures of 330-370oC retaining small grain size and equiaxed grain structure. The microstructure of the UFG alloy subjected to warm rolling (WR) was studied, and the mechanical properties of the ECAP+WR samples with UFG structures were investigated. We have found that the rolled material exhibited not only the enhanced superplasticity, but also high strength at room temperature.


1973 ◽  
Vol 29 (01) ◽  
pp. 183-189
Author(s):  
C. A Praga ◽  
E. M Pogliani

SummaryTemperature represents a very important variable in ADP-induced platelet aggregation.When low doses of ADP ( < 1 (μM) are used to induce platelet aggregation, the length of the incubation period of PRP in the cuvette holder of the aggregometer, thermostatted at 37° C, is very critical. Samples of the same PRP previously kept at room temperature, were incubated for increasing periods of time in the cuvette of the aggregometer before adding ADP, and a significant decrease of aggregation, proportional to the length of incubation, was observed. Stirring of the PRP during the incubation period made these changes more evident.To measure the exact temperature of the PRP during incubation in the aggre- gometer, a thermocouple device was used. While the temperature of the cuvette holder was stable at 37° C, the PRP temperature itself increased exponentially, taking about ten minutes from the beginning of the incubation to reach the value of 37° C. The above results have a practical significance in the reproducibility of the platelet aggregation test in vitro and acquire particular value when the effect of inhibitors of ADP induced platelet aggregation is studied.Experiments carried out with three anti-aggregating agents (acetyl salicyclic acid, dipyridamole and metergoline) have shown that the incubation conditions which influence both the effect of the drugs on platelets and the ADP breakdown in plasma must be strictly controlled.


2013 ◽  
Vol 48 (2) ◽  
pp. 211-219 ◽  
Author(s):  
Guangyu YANG ◽  
Hongshuai MENG ◽  
Shaojun LIU ◽  
Yuanhao QI ◽  
Wanqi JIE

Sign in / Sign up

Export Citation Format

Share Document