scholarly journals Cucurbits as a model system for crop pollination management

2019 ◽  
Vol 25 ◽  
Author(s):  
Jessica Louise Knapp ◽  
Juliet Laura Osborne

Cucurbit crops have steadily increased in production over the last 50 years, particularly in Asia where pioneering technological advancements and genetic improvements have created new hybrid varieties. Generally, cucurbits are dependent on insect-pollination for fruit set and are popular species for pollination studies. This review systematically summarises pollination research conducted in the major food genera of cucurbits: Cucurbita, Cucumis, and Citrullus, to ask: 1) what are cucurbits’ requirement for pollination and their most effective pollinators? And 2) Does pollinator management increase pollinator visitation to, and yield of, cucurbit crops? These accounts of cucurbit pollination demonstrate that wild bee species such as Bombus terrestris, B. impatiens and Eucera spp. were frequently able to fulfil the pollination requirements of multiple cucurbit species. However, pollinator behaviour, pollen deposition on stigmas, and pollinators’ contribution to yield vary between cucurbit species and study site. Nonetheless, the provision of additional floral resources at both field and farm scales may help to encourage pollination of cucurbit species whilst supporting pollinators’ nutritional requirements beyond those already provided by the cucurbit crop. Synthesising studies on cucurbits’ requirement for pollination and how pollinators vary spatially and temporally in the landscape can extend beyond cucurbit systems to inform growers and pollination ecologists of other pollinator-dependent crop species wishing to maximise pollination services, species conservation; or both.

2017 ◽  
Author(s):  
Mahua Ghara ◽  
Christina Ewerhardy ◽  
Gil Yardeni ◽  
Mor Matzliach ◽  
Yuval Sapir

ABSTRACTFlorivory, the damage to flowers by herbivores can affect fitness both directly and indirectly. Flowers consumed by florivores may fail to produce fruit or produce lower seed set because of direct damage to reproductive organs. In addition, eaten flowers are less attractive to pollinators because of reduced or modified advertisement, which reduces pollination services. While observational data are abundant, experimental evidence is scarce and results are contrasting. We tested experimentally the effect of florivory on both pollinator visitation and reproductive success in three species of the Royal Irises, which have large flowers that are attractive to pollinators, and potentially also for florivores. We hypothesized that florivory will reduce pollen deposition due to reduced attractiveness to pollinators, while fruit set and seed set will depend on the extent of florivory. We performed artificial florivory in two experiments over two years. In the first experiment, each of the three floral units of a single Iris flower was subject to either low or high artificial florivory, or left un-touched as control. We counted the number of pollen grains deposited on each of the three stigmas as a measure of pollinator visitation. In the second experiment, three flowers of the same plant received low, high, or no artificial florivory and were further recorded for fruit and seed production. In 2016, high artificial florivory revealed lower number of pollen grains on stigmas of Iris atropurpurea, but in 2017 there was no difference. Similarly, number of pollen grains in high artificial was lower than low florivory in 2017 in I. petrana. No significant effect of florivory was found on pollen grain deposition, fruit set or seed set. The results remained consistent across species and across years. The results undermine the assumption that flower herbivory is necessarily antagonistic interaction and suggests that florivores may not be strong selection agents on floral reproductive biology in the Oncocyclus irises.


2020 ◽  
Vol 68 (4) ◽  
pp. 275
Author(s):  
Jenna T. Draper ◽  
John G. Conran ◽  
Nicholas Crouch ◽  
Philip Weinstein ◽  
Bradley S. Simpson

Dioecious plants constitute 7% of all angiosperm species, yet they occur in many habitat types, partially through the deployment of sexual dimorphisms that assist in reproduction. In the present work, the dioecious monocot Lomandra leucocephala ssp. robusta (Asparagaceae: Lomandroideae) was studied to understand how sexual dimorphisms can assist species conservation and inform us of a species’ potential significance in an ecosystem. Floral display was sexually dimorphic, as male inflorescences were displayed more prominently and more conspicuously in UV range. Male nectar analysed by thin-layer chromatography contained a higher glucose content than female nectar. However, both sexes contained hexose-rich nectar, a common indicator of generalist pollination, which was supported by observations of floral visitors. Floral extract comparison conducted via gas chromatography-mass spectrometry showed that male extracts contained more compounds that potentially convey greater resistance to biotic and abiotic threats. Chemical comparison of leaves by high performance liquid chromatography with peak area ratio analysis revealed this technique could be used as a tool for gender identification of individuals during non-flowering periods. Due to the generalist pollination mechanisms of L. leucocephala ssp. robusta, may have an important role in the conservation and support of local insect populations. The presence of chemical biotic and abiotic resistance may also make L. leucocephala ssp. robusta a significant contributor to the ongoing stabilisation of the sand dunes. Conservation efforts required for L. leucocephala ssp. robusta are likely to be minimal, as pollination services are provided by a diversity of pollinating taxa, including introduced species, which will be abundant regardless of variable flowering periods. Further observational study of L. leucocephala ssp. robusta pollinators and differences in pollinator visitation behaviours between sexes is recommended to better understand efficient pollination for the species, and potentially reveal a greater extent of ecosystem benefit for this species.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 499
Author(s):  
Rebecca M. Dew ◽  
Quinn S. McFrederick ◽  
Sandra M. Rehan

Bees collect pollen from flowers for their offspring, and by doing so contribute critical pollination services for our crops and ecosystems. Unlike many managed bee species, wild bees are thought to obtain much of their microbiome from the environment. However, we know surprisingly little about what plant species bees visit and the microbes associated with the collected pollen. Here, we addressed the hypothesis that the pollen and microbial components of bee diets would change across the range of the bee, by amplicon sequencing pollen provisions of a widespread small carpenter bee, Ceratina calcarata, across three populations. Ceratina calcarata was found to use a diversity of floral resources across its range, but the bacterial genera associated with pollen provisions were very consistent. Acinetobacter, Erwinia, Lactobacillus, Sodalis, Sphingomonas and Wolbachia were among the top ten bacterial genera across all sites. Ceratina calcarata uses both raspberry (Rubus) and sumac (Rhus) stems as nesting substrates, however nests within these plants showed no preference for host plant pollen. Significant correlations in plant and bacterial co-occurrence differed between sites, indicating that many of the most common bacterial genera have either regional or transitory floral associations. This range-wide study suggests microbes present in brood provisions are conserved within a bee species, rather than mediated by climate or pollen composition. Moving forward, this has important implications for how these core bacteria affect larval health and whether these functions vary across space and diet. These data increase our understanding of how pollinators interact with and adjust to their changing environment.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1993
Author(s):  
Philipp W. Eckerter ◽  
Lars Albus ◽  
Sharumathi Natarajan ◽  
Matthias Albrecht ◽  
Lolita Ammann ◽  
...  

Wild bumblebees are key pollinators of crops and wild plants that rely on the continuous availability of floral resources. A better understanding of the spatio-temporal availability and use of floral food resources may help to promote bumblebees and their pollination services in agricultural landscapes. We placed colonies of Bombus terrestris L. in 24 agricultural landscapes with various degrees of floral resource availability and assessed different parameters of colony growth and fitness. We estimated pollen availability during different periods of colony development based on detailed information of the bumblebee pollen diet and the spatial distribution of the visited plant species. Total pollen availability did not significantly explain colony growth or fitness. However, when using habitat maps, the weight gain of colonies, the number of queen cells, and colony survival decreased with increasing distance from the forest. The better explanation of bumblebee performance by forest proximity than by (plant-inferred) pollen availability indicates that other functions of forests than pollen provision were important. The conservation of forests next to agricultural land might help to sustain high populations of these important wild pollinators and enhance their crop pollination services. Combining different mapping approaches might help to further disentangle complex relationships between B. terrestris and their environment in agricultural landscapes.


Author(s):  
Ulrich Neumüller ◽  
Hannah Burger ◽  
Hans Richard Schwenninger ◽  
Sebastian Hopfenmüller ◽  
Sabrina Krausch ◽  
...  

AbstractFlower plantings can increase the abundance of bees and improve pollination services in the surrounding landscape. However, uncertainty remains as to whether flower plantings play a role in wild bee conservation. The aim of this study has been to examine the contribution of the composition and management of flower plantings to the attraction of bees, particularly of endangered species. In a large-scale monitoring project, wild bee data were collected on 60 flower plantings and 120 semi-natural reference plots in 20 study sites over 2 years. In total, we recorded 60,335 bees belonging to 351 species. In flower plantings, bee species richness and abundance were intricately linked to high plant richness and constant blooming throughout the season. In the first year of this study, a complimentary blooming phenology of annual and perennial plants resulted in a more constant bloom on flower plantings. In the second year, partial mowing of flower plantings mid-season enhanced floral resources during the late season. As a result, bee richness and abundance in flower plantings increased from the first to the second year. Nevertheless, the compositional heterogeneity of bees over all 20 sites in Germany did not increase from the first to the second year. We conclude that diverse and constant blooming throughout the season is the most important factor for promoting bees in flower plantings. To ensure sufficient beta diversity over a large spatial scale, we recommend the adjustment of seed mixtures according to the geographical region.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Darin J. McNeil ◽  
Elyse McCormick ◽  
Ashley C. Heimann ◽  
Melanie Kammerer ◽  
Margaret R. Douglas ◽  
...  

AbstractThe pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees’ susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.


2009 ◽  
Vol 276 (1664) ◽  
pp. 2031-2036 ◽  
Author(s):  
Thomas C. Ings ◽  
Lars Chittka

Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees ( Bombus terrestris ) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success.


Author(s):  
Callum D. Martin ◽  
Michelle T. Fountain ◽  
Mark J. F. Brown

AbstractCommercially-reared bumblebee colonies provide pollination services to numerous crop species globally. These colonies may harbour parasites which can spill-over to wild bee species. However, the potential for parasites to spread from wild to commercial bumblebees, which could then lead to parasite spill-back, is poorly understood. To investigate this, parasite-free commercial Bombus terrestris audax colonies, which are used commercially for strawberry pollination, were placed into seasonal strawberry crops for either 6- or 8-week blocks across two key time periods, early spring and early summer. Bumblebees were removed from colonies weekly and screened for the presence of parasites. In the early spring placement, only one parasite, the highly virulent neogregarine Apicystis bombi, was detected at a low prevalence (0.46% across all bees screened). In contrast, all colonies placed in the crop in the early summer became infected. A trypanosome, Crithidia bombi, and A. bombi were the most prevalent parasites across all samples, reaching peak prevalence in screened bees of 39.39% and 18.18% respectively at the end of the experimental period. The prevalence of A. bombi was greater than most UK records from wild bumblebees, suggesting that commercial colonies could enhance levels of A. bombi infection in wild bees through spill-back. Studies on larger geographical scales with different commercial colony densities are required to fully assess spill-back risk. However, seasonal management, to minimise spill-back opportunities, and treatment of commercial colonies to prevent infection, could be implemented to manage the potential risks of parasite spill-back to wild bees.Implications for insect conservation Our results show that commercial bumblebee populations do pick up infections, most likely from wild bees, and that these infections can reach prevalences where they may pose a threat to wild bees via parasite spill-back. More research is required to clarify the extent of this potential threat.


2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


2021 ◽  
Vol 13 (11) ◽  
pp. 6109
Author(s):  
Joanne Lee Picknoll ◽  
Pieter Poot ◽  
Michael Renton

Habitat loss has reduced the available resources for apiarists and is a key driver of poor colony health, colony loss, and reduced honey yields. The biggest challenge for apiarists in the future will be meeting increasing demands for pollination services, honey, and other bee products with limited resources. Targeted landscape restoration focusing on high-value or high-yielding forage could ensure adequate floral resources are available to sustain the growing industry. Tools are currently needed to evaluate the likely productivity of potential sites for restoration and inform decisions about plant selections and arrangements and hive stocking rates, movements, and placements. We propose a new approach for designing sites for apiculture, centred on a model of honey production that predicts how changes to plant and hive decisions affect the resource supply, potential for bees to collect resources, consumption of resources by the colonies, and subsequently, amount of honey that may be produced. The proposed model is discussed with reference to existing models, and data input requirements are discussed with reference to an Australian case study area. We conclude that no existing model exactly meets the requirements of our proposed approach, but components of several existing models could be combined to achieve these needs.


Sign in / Sign up

Export Citation Format

Share Document