scholarly journals ASSESSMENT OF HYDROCHEMICAL QUALITY OF GROUND WATER UNDER SOME URBAN AREAS WITHIN SANA’A SECRETERIAT

2018 ◽  
Vol 35 (1) ◽  
pp. 77 ◽  
Author(s):  
Wadie S.T AL- Ariqi ◽  
Abduljalil A.D.S Ghaleb

Groundwater from nine wells of three different districts, located at Sana’a  secretariat was analyzed for hydrochemical quality assessment. Measurements of water quality parameters including pH, EC, CO32-, HCO3-,Cl-,NO3-,SO4 2-,Ca2+, Mg2+, Fe3+, K+, and Na+ were carried out . Classification of the groundwater samples according to Cl, SO4 2-, CO32- and HCO3-, hardness(H), total dissolved solids (TDS), base-exchange, and meteoric genesis was demonstrated. Suitability of ground water samples for irrigation and industrial uses according to sodium adsorption ration (SAR), ratio of dissolved sodium (RDS), residual sodium carbonate (RSC) and saturation index (SI) was also investigated. The results of this study showed that almost all ground water samples were of good quality that makes them suitable for drinking and  domestic uses. Results also indicated that even though some of the ground water samples were suitable for irrigation purposes, almost all of them were found not be good for industrial uses. Despite all drawbacks of the sewerage system built around Sana’a secretariat at the beginning of the first decade of the third millennium, the results of this study indicate that there is scope of significant improvement in Sana’a secretariat ground water quality.

Author(s):  
Abhilash M R ◽  
Shiva Kumar D ◽  
Srikantaswamy S

<div><p><em>The </em><em>Mysuru is a unique city and was the capital city of former princely state of Karnataka</em><em>, and its groundwater resources are developed for water supply and irrigation purposes. In order to evaluate the quality of groundwater in study area, 07 groundwater samples were collected and analyzed for various Secondary parameters. Including Physical and chemical parameters of groundwater such as Sodium Absorption Ratio, Residual Sodium Carbonate, Permeability Index, Corrosivity Ratio, Indices of Base exchange, CaCO<sub>3</sub> Saturation Indices, Gibb’s plot of determining the Mechanisms controlling ground water Chemistry, Handa’s Classifications, USSL Clasifications , CaCO<sub>3</sub> Saturation Indices and Stuyzfzand’s were determined and the indices were calculated. Based on the analytical results, groundwater in the area is generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO<sub>3</sub> &gt; SO<sub>4</sub> &gt; Cl and Ca &gt; Mg &gt; Na &gt; K. The dominant hydrochemical facieses of groundwater is Ca-HCO<sub>3</sub> and Ca-Mg-HCO<sub>3</sub> type. The results of calculation saturation index by basic computer program HYCY shows that the nearly all of the water samples were saturated to under saturated with respect to carbonate minerals and under saturated with respect to sulfate minerals. Assessment of water samples from various methods indicated that groundwater in study area is chemically not suitable for drinking and agricultural uses. </em></p></div>


2009 ◽  
Vol 1 (2) ◽  
pp. 275-279 ◽  
Author(s):  
D. S. Malik ◽  
Pawan Kumar ◽  
Umesh Bharti

The present study aims to identify the ground water contamination problem in villages located in the close vicinity of Gajraula industrial area at Gajraula (U.P.), India. Ground water samples were collected from different villages at the depth of 40 and 120 feet from earth’s surface layer. Analytical techniques as described in the standard methods for examination of water and waste water were adopted for physico-chemical analysis of ground water samples and the results compared with the standards given by WHO and BIS guidelines for drinking water. Water quality index was calculated for quality standard of ground water for drinking purposes. The present investigation revealed that the water quality is moderately degraded due to high range of seven water quality parameters such as Temperature (18.33-32.36 0C), conductivity (925.45-1399.59 μmho/cm), TDS (610.80-923.73 mgL-1), Alkalinity (260.17- 339.83 mgL-1), Ca-Hardness (129.68-181.17 mgL-1), Mg-Hardness (94.07-113.50 mgLÉ1) and COD (13.99-25.62 mgL-1). The water quality index (WQI) also indicated the all the water quality rating comes under the standard marginal values (45-64) i.e. water quality is frequently threatened or impaired and conditions usually depart from natural or desirable levels.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Farooque Lanjwani ◽  
Muhammad Yar Khuhawar ◽  
Taj Muhammad Jahangir Khuhawar

AbstractThe study examines the water quality of Shahdadkot, Qubo Saeed Khan and Sijawal Junejo talukas of Qambar Shahdadkot District, less affected by industrial contamination. A total of 38 groundwater samples were collected and analysed for 28 parameters. The results indicated that 57.89% samples were not suitable for drinking purpose with total dissolved solids above than maximum permissible limit of World Health Organization (WHO) (1000 mg/L). The pH, total phosphate, orthophosphate and nitrite were within WHO limits. The concentration of essential metals more than half samples, fluoride in 60.52% and heavy metals 0–50% were contaminated higher than permissible limits of WHO. The statistical analysis of water quality parameters was also carried out to evaluate coefficient of determination among the parameters, cluster analysis and principal component analysis. Water quality determined for irrigation based on Kelly index (KI), sodium percentage (Na%), chloride–sulphate ratio, sodium adsorption ratio, permeability index (PI), chloroalkaline indices 1 (CAI-1), residual sodium carbonate and chloride bicarbonate ratio indicated that samples (55 to 100%) could be used for irrigation purposes. The consumption of water with high concentration of salts and fluoride above the permissible limits may be a cause of a number of diseases in the area.


2020 ◽  
Vol 16 (3) ◽  
pp. 178
Author(s):  
Arniza Fitri ◽  
Khairul Nizam Abdul Maulud ◽  
Dian Pratiwi ◽  
Arlina Phelia ◽  
Farli Rossi ◽  
...  

The issues of freshwater pollutions and the high demand of clean freshwater for daily human activities have forced developing countries such as Malaysia to continuously monitor the quality of the freshwater. The present study objective is to present the trend of water quality status in the Kelantan River downstream, Peninsular Malaysia from 2005 to 2018. Water samples were collected during dry and monsoon seasons from a sampling station located at downstream of the Kelantan River. Water quality parameters such as temperature, pH and dissolved oxygen (DO) were measured in situ while other parameters were analysed in the laboratory based on retrieved water samples. Water quality status was determined based on National Water Quality Standard (NWQS) for River in Malaysia by calculating the water quality index (WQI) according to the concentration of six water quality parameters involving pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (TSS) and Ammonia Nitrogen (AN). The results showed that Kelantan River had good water quality during the dry season classified in Class II at 2005. The water quality was found to be slightly lower during the monsoon season in year 2006. In addition, increasing the number of construction, human activities in the land use areas, land use changes and the sewage water from domestic, industrial, wet market and food outlets in the Kelantan State have declined the water quality in Kelantan River from Class II (in 2005) to Class III (in 2010 and 2011) and to become Class IV in 2017 to 2018. The results of the present study are expected to give valuable information for the water managers in order to deal with better strategies in controlling the quality of freshwater at the Kelantan River and minimize the incidence of pollution-oriented problems, thus the water can be utilized for various water uses with appropriate quality.


2021 ◽  
Vol 30 (3) ◽  
pp. 546-561
Author(s):  
K. Mohammed Rizwan ◽  
V. Thirukumaran ◽  
M. Suresh

The aims of the current research are to assess the drinking water quality of the groundwater in the Gadilam River Basin, which is located in the northern part of Tamil Nadu, by identifying the groundwater quality index and examine its suitability for drinking. The current work determines the levels of groundwater quality parameters based on 120 groundwater samples; 50 samples from Archaean formation, 34 samples from Quaternary formation, 35 samples from Tertiary formation and the remaining sample from Cretaceous formation. Additionally, this research compares the determined levels with the various standards for drinking. Furthermore, the variability of parameters of the groundwater quality is explored in this paper by using the spatial interpolation method. The conclusion of this research reveals that the groundwater quality parameters such as Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO32-), Fluoride (F-), Sulphate (SO42-), Bi-carbonate (HCO3-) and Percentage of Hydrogen (pH) values are observed to be within the limiting value for WHO 2017 in all the formations during the seasons in which they were taken. The water quality index (WQI) values of the Archaean, Quaternary and Tertiary formations are found to be less than 100 meq/L in all stations in both seasons. In order of WQI, these stations come under the category of “Excellent” and “Good”. The Piper trilinear classification of groundwater samples fall in the field of mixed Ca-Mg-Cl, and No dominance, some of the samples represent Na-K, Cl types of water.


2021 ◽  
Vol 26 (2) ◽  
pp. 99-110
Author(s):  
Septian Vienastra

The quality of coastal ground water on small islands has characteristics that are influenced by environmental and area factors. Yeben Island is a small island with an area of 0.57 km2 with priority coastal and marine tourism areas in the islands of Raja Ampat. This study aims to (1) analyze levels of ground water quality parameters and (2) analyze water samples against water quality standards. Groundwater samples taken as many as 4 samples from the study location. The location of water samples is in the morphology of the coastal plain. The analysis of each physical and chemical parameter of each groundwater sample is carried out by comparing the value of drinking water quality standards. The results are presented in a comparison table of quality standards and a graph of scaled values.Based on the results, the laboratory shows that it exceeds the quality standard of physical elements and chemical elements including fluoride, hardness, sulfate and organic substances. In general, the quality of water is poor. Poor ground water quality occurs due to the influence of sea water intrusion.


2020 ◽  
Vol 4 (2) ◽  
pp. 99
Author(s):  
Yaseen Ahmed Hamaamin ◽  
Jwan Bahadeen Abdullah

Water is vital for all forms of life on earth. Assessing the quality of water especially drinking water is one of the important processes worldwide which affect public health. In this study, the quality of drinking water in Sulaimani City is monitored for a study period of 1 year. A total number of 78 water samples were collected and analyzed for 17 physical and chemical properties of water supply system to the city. Samples of water are collected from the three main sources of drinking water for Sulaimani City (Sarchnar, Dukan line-1, and Dukan line-2) from February to August 2019. The results of physical and chemical parameters of collected water samples were compared with the World Health Organization and Iraqi standards for drinking water quality. The results of this study showed that mostly all parameters were within the standards except the turbidity parameter which was exceeded the allowable standards in some cases. This research concluded that, in general, the quality of drinking water at the three main sources of Sulaimani City is suitable and acceptable for drinking.


Author(s):  
Muhammad Zeeshan Khalid ◽  
Muhammad Saqib Nawaz ◽  
Asma Jamil ◽  
Noreddine Ghaffour

This study was conducted to assess the effect of wastewater quality of Paharang drain Faisalabad on ground water quality of adjacent areas. Ground water samples and drain water samples were collected and analyzed by using standard methods. Parameters of wastewater samples were compared with Pakistan National Environmental Quality Standards (NEQS). Results indicated that physico-chemical parameters including pH, total dissolved solids (TDS), chloride, fluoride and total hardness were found exceeding the permissible limits in wastewater samples. Similarly, few physicochemical parameters in groundwater were found within the permissible limit while electrical conductivity (EC), TDS, chlorides (Cl), fluoride (F), and total hardness in most of samples were found above the Pak EPA and WHO standard limits. Heavy metals like nickel (Ni), chromium (Cr), iron (Fe), lead (Pb), and arsenic (As) were found within the prescribed concentrations in drain and ground water samples. Statistical analysis showed significant effect of some drain wastewater parameters like conductivity, TDS, salt, temperature, and Cl on the corresponding ground water quality. A strong positive correlation between pH, EC, TDS, Salt, and Cl in drain wastewater and strong positive correlation between EC, TDS and Salt in ground water samples was observed. For improving the ground water quality in the adjacent areas textile wastewater treatment all factories is required, and a combined effluent treatment plant (CETP) at the Paharang drain is also recommended.


Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
Sanjay Singh ◽  

A study was conducted to evaluate the ground water quality of 40 samples collected from the hand-pumps of different villages during pre and post monsoon period. The water quality parameters were analyzed to ascertain the potability of drinking water against recommended limits of WHO and BIS. The electrical conductivity for all the samples were above the WHO standards, while the bicarbonates in 81 per cent samples were found to be above critical level. The maximum TDS (680-748 mgL-1) value was recorded in Dholi village during post monsoon period. The bicarbonate concentration was found in all the samples and it was maximum in Sakara village while carbonates content was absent in these samples.


Water Quality Index (WQI) is a widely used technique in defining the quality of groundwater and finding whether it is advisable for human use. It is utmost necessary steps to understand the physical and chemical parameters defining the water quality for particular period and location using WQI calculation as it gives information in a single value. WQI has been calculated in twenty ground water samples collected from selected sampling stations at Madurai in the pre-monsoon, monsoon and post monsoon seasons. The water quality index values suggested that almost all the ground water samples were above 150, which indicated that they were unfit for drinking and one sample from Vilangudi had WQI less than 100 which indicated the water as poor category for drinking but could be used for irrigation purposes. The groundwater quality is also defined to be little better during post monsoon season in all the samples than during pre-monsoon and monsoon season.


Sign in / Sign up

Export Citation Format

Share Document