scholarly journals STUDY OF THE CATALYTIC ACTIVITY OF BOVINE BONE POWDER IMPREGNATED WITH FE(III) NEW MATERIAL FOR THE CATALYTIC DEGRADATION OF INDIGO CARMINE

2017 ◽  
Vol 38 (1) ◽  
pp. 117
Author(s):  
Márcio G. Coelho ◽  
Geraldo M. de Lima ◽  
Rodinei Augusti ◽  
José D. Ardisson ◽  
Fabrício V. de Andrade ◽  
...  

In this work, a composite consisting of bovine bone powder impregnated with Fe(III) ions was prepared and its performance evaluated as a catalyst for the degradation of the textile dye Indigo Carmine in aqueous medium. One of the advantageous features of this new material is that it is inexpensive, simple to prepare and the support, bovine bone, is one the final residue of food production. The material was fully characterized by X-ray powder diffraction (DRX), 57Fe-Mössbauer spectroscopy, surface area measurements (BET), atomic absorption spectrometry. The degradation of Indigo Carmine was monitored by ultraviolet spectroscopy in the visible region (UV-Vis) and the by-products characterized by direct infusion ESI(-)MS (electrospray ionization mass spectrometry in the negative ion mode).

Planta Medica ◽  
2020 ◽  
Author(s):  
Omer I. Fantoukh ◽  
Yan-Hong Wang ◽  
Abidah Parveen ◽  
Mohammed F. Hawwal ◽  
Gadah A. Al-Hamoud ◽  
...  

Abstract Moringa oleifera is known as a drumstick tree and is cultivated in the subtropics and tropics. It exhibits antihypertensive and antidiabetic effects. An ultra-high-performance liquid chromatography method was developed for the determination of 9 phytochemicals in M. oleifera leaves and marketed products. The efficient separation was achieved within 7 min with a temperature of 45 °C by using a C-18 column as the stationary phase and water/acetonitrile with 0.05% formic acid as the mobile phase. The method was validated for linearity, repeatability, limits of detection, and limits of quantification. The limits of detections of phenolic compounds 1 – 9 were as low as 0.2 µg/mL. The photodiode array detector at 220 and 255 nm wavelengths was recruited for quantification. The key phytochemicals were detected in the range of 0.42 to 2.57 mg/100 mg sample weight in 13 dietary supplements. This study considers the quantitative analysis for lignans in M. oleifera for the first time. Isoquercitrin (5) and quercetin 3-O-(6-O-malonyl)-β−D-glucopyranoside (6) predominates the leaves of M. oleifera with inherent degradable nature detected for compound 6. Niazirin (2) was detected in amounts between 0.010 – 0.049 mg/100 mg while compound 1 was undetectable and potentially an artifact because of the fractionation process. The characterization and confirmation of components were achieved by liquid chromatography-electrospray ionization-mass spectrometry with extractive ion monitoring for the positive and negative ion modes. The developed and validated method is robust and rapid in the conclusive quantification of phytochemicals and authentication of the Moringa samples for quality assurance.


1997 ◽  
Vol 13 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Kevin B. Thurbide ◽  
C. M. Elson ◽  
P. G. Sim

The negative‒ion chemical ionization mass spectra of a group of structural isomers of amphetamine have been studied using carbon dioxide as the reagent gas. Characteristic and reproducible differences are observed for each member of the set implying that this technique offers a means of distinguishing among groups of amphetamine isomers. Characteristic adducts to the molecular ion are observed in the form (M–[H]+[O]) and (M–[H]+[CO2]). Descriptions of some fragments are given based on the mass spectral behaviour of a set of analogue compounds and the results of oxygen-18 labelled carbon dioxide reagent gas experiments. Contents of the carbon dioxide plasma and their impact on various analytes is also discussed.


1984 ◽  
Vol 106 (23) ◽  
pp. 6877-6883 ◽  
Author(s):  
Seymour Meyerson ◽  
Donald J. Harvan ◽  
J. Ronald Hass ◽  
Fausto Ramirez ◽  
James F. Marecek

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S386-S387
Author(s):  
Sydney C Povilaitis ◽  
Ashish D Chakraborty ◽  
Rachel D Downey ◽  
Sarmistha Bhaduri Hauger ◽  
Livia Eberlin

Abstract Background In the age of antimicrobial resistance, rapid identification of infectious agents is critical for antimicrobial stewardship and effective therapy. To this end, ambient ionization mass spectrometry techniques have been applied for rapid identification of microbes directly from culture isolates. We have developed a handheld, mass spectrometry-based device, the MasSpec Pen, that permits direct molecular analysis of a biological sample in seconds (Scheme 1). Here, we employ the MasSpec Pen to identify clinically relevant microbes directly from culture isolates. Methods Staphylococcus aureus, Staphylococcus epidermidis, Group A and B Streptococcus, Kingella kingae (K.k), and Pseudomonas aeruginosa (P.a) were cultured on 5% sheep’s blood nutrient agar at 37 °C overnight. Colonies were transferred to a glass slide where they were analyzed directly with the MasSpec Pen coupled to a Q Exactive mass spectrometer (Thermo Scientific) in negative ion mode. For MasSpec Pen analysis, a 10 µL droplet of water was held in contact with the sample surface for 3 seconds and then aspirated to the mass spectrometer for analysis. Data was normalized and the molecular features resulting from the analysis solvent and nutrient medium were removed. The least absolute shrinkage and selection operator (lasso) statistical method was used to build classification models for prediction of bacterial identity. Model performance was evaluated by leave-one-out cross-validation and a validation set of samples. Scheme 1: MasSpec Pen workflow Results Various small molecules were detected including metabolites and glycerophospholipid species. The mass spectral profiles for each species exhibited qualitative differences among them (Figure 1). Additionally, several quorum-sensing molecules were observed in P.a. including hydroxy-heptyl-quinoline (m/z 242.155). Lasso statistical classifiers were created to differentiate organisms at the level of Gram type, genus, and species with each model comprised of a sparse set of molecular features. Accuracies of 90% or greater were achieved for all lasso models and as high as 98% for the differentiation of Staphylococcus (Staph.) and Streptococcus (Strep.). Figure 1: Molecular profiles of species analyzed Figure 2: Statistical classification results Conclusion These results demonstrate the potential of the MasSpec Pen as a tool for clinical analysis of infected biospecimens. Disclosures Sydney C. Povilaitis, BA, MS Pen Technologies, Inc. (Other Financial or Material Support, Patent) Livia Eberlin, PhD, MS Pen Technolpogies, Inc. (Board Member, Shareholder)


2016 ◽  
Vol 148 ◽  
pp. 115-124 ◽  
Author(s):  
Nátali O. Alves ◽  
Gabriela T. da Silva ◽  
Douglas M. Weber ◽  
Cristiane Luchese ◽  
Ethel A. Wilhelm ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Iolanda-Veronica Ganea ◽  
Alexandrina Nan ◽  
Iulia Neamțiu ◽  
Călin Baciu

A continuous increase of environmental pollution has been recorded worldwide, during recent decades, as a result of industrialization and urbanization. In particular, metal release in the environmental media may threaten human health, due to their persistence and accumulation in the food chain. We report here the functionalization of chitosan with poly(benzofurane-co-arylacetic) acid, which is a new material with the ability of complex metals from contaminated water. The synthesized polymer was structurally investigated by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray photon electron microscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR), while heavy metals were determined by atomic absorption spectrometry. Different isotherms and kinetic models were used to describe the absorption equilibrium and the behavior of the material, based on the initial pollutant concentration and contact time. The results are pointing out that such natural materials can be easily synthesized, at low costs, thus offering attractive solutions for wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document